
Chapter 1

Introduction

The first chapter is an introduction, including the formal definition of a graph
and many terms we will use throughout. More importantly, however, are ex-
amples of these concepts and how you should think about them. As a first
nontrivial use of graph theory, we explain how to solve the "Instant Insanity"
puzzle.

1.1 A first look at graphs

1.1.1 The idea of a graph

First and foremost, you should think of a graph as a certain type of picture,
containing dots and lines connecting those dots, like so:

A

B

C

D
E

Figure 1.1.1: A graph

We will typically use the letters G,H, or Γ (capital Gamma) to denote
a graph. The “dots” or the graph are called vertices or nodes, and the lines
between the dots are called edges. Graphs occur frequently in the “real world”,
and typically how to show how something is connected, with the vertices rep-
resenting the things and the edges showing connections.

• Transit networks: The London tube map is a graph, with the vertices
representing the stations, and an edge between two stations if the tube
goes directly between them. More generally, rail maps in general are
graphs, with vertices stations and edges representing line, and road maps
as well, with vertices being cities, and edges being roads.

• Social networks: The typical example would be Facebook, with the ver-
tices being people, and edge between two people if they are friends on
Facebook.
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• Molecules in Chemistry: In organic chemistry, molecules are made up of
different atoms, and are often represented as a graph, with the atoms be-
ing vertices, and edges representing covalent bonds between the vertices.

Figure 1.1.2: A Caffeine Molecule, courtesey Wikimedia Commons

That is all rather informal, though, and to do mathematics we need very
precise, formal definitions. We now provide that.

1.1.2 The formal definition of a graph

The formal definition of a graph that we will use is the following:

Definition 1.1.3. A graph G consists of a set V (G), called the vertices of G,
and a set E(G), called the edges of G, of the two element subsets of V (G)

Example 1.1.4. Consider the water molecule, which consists of a single oxy-
gen atom, connected to two hydrogen atoms. It has three vertices, and so
V (G) = {O,H1, H2}, and two edges E(G) =

�
{O,H1}, {O,H2}

�

This formal definition has some perhaps unintended consequences about
what a graph is. Because we have identified edges with the two things they
connect, and have a set of edges, we can’t have more than one edge between any
two vertices. In many real world examples, this is not the case: for example, on
the London Tube, the Circle, District and Picadilly lines all connect Gloucester
Road with South Kensington, and so there should be multiple edges between
those two vertices on the graph. As another example, in organic chemistry,
there are often "double bonds", instead of just one.

Another consequence is that we require each edge to be a two element
subset of V (G), and so we do not allow for the possibility of an edge between
a vertex and itself, often called a loop.

Graphs without multiple edges or loops are sometimes called simple graphs.
We will sometimes deal with graphs with multiple edges or loops, and will try
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to be explicit when we allow this. Our default assumption is that our graphs
are simple.

Another consequence of the definition is that edges are symmetric, and work
equally well in both directions. This is not always the case: in road systems,
there are often one-way streets. If we were to model Twitter or Instragram as
a graph, rather than the symmetric notion of friends we would have to work
with “following”. To capture these, we have the notion of a directed graph,
where rather than just lines, we think of the edges as arrows, pointing from
one vertex (the source) to another vertex (the target). To model Twitter or
Instagram, we would have an ege from vertex a to vertex b if a followed b.

1.1.3 Basic examples and concepts
Several simple graphs that are frequently referenced have specific names.

Definition 1.1.5. The complete graph Kn is the graph on n vertices, with an
edge between any two distinct vertices.

Definition 1.1.6. The empty graph En is the graph on n vertices, with no
edges.

Definition 1.1.7. The path graph Pn is the graph on n vertices {v1, . . . , vn}
with edges {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}.
Definition 1.1.8. The cycle graph Cn is the graph on n vertices {v1, . . . , vn}
with edges {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}.

K5 E5 P5 C5

Figure 1.1.9: Basic graphs

Definition 1.1.10. The complelement of a simple graph G, which we will
denote Gc, and is sometimes written G, is the graph with the same vertex set
as G, but {v, w} ∈ E(Gc) if and only if {v, w} /∈ E(G); that is, there is an
edge between v and w in Gc if and only if there is not an edge between v and
w in G

Example 1.1.11. The empty graph and complete graph are complements of
each other; Kc

n = En

The path graph P4 and its complement are shown below:

P4 P c
4

It commonly occurs that there are two different types of vertices, and the
edges only go between vertices of the two types. For example, we may be
modelling a company, and one type of vertices may represent the employees,
and another type of vertices could represent the different jobs that need done,
with an edge between a worker and a job if the worker is qualified to do that
particular job. We call these graphs bipartite.
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Definition 1.1.12. A graph G is bipartite if its vertices can be coloured red
and blue so that every edge goes between a red vertex and a blue vertex.

Example 1.1.13. The graph below is bipartite.

As another example, note that the cycle graph C4 is bipartite – we can
colour vertices 1 and 3 red, and vertices 2 and 4 blue. But the cycle graph
C3 is not bipartite: as the two colours are interchangable, we can assume we
coloured vertex 1 red; then since it is adjacent to both 2 and 3, those vertices
must both be blue, but they’re adjacent to each other, which violates the
definition of bipartite. More generally, we have:

Lemma 1.1.14. The cycle graph Cn is bipartite if and only if n is even.

Proof. Let’s try to colour the vertices of Cn red and blue so that adjacent
vertices have different colour. Without loss of generality, we may assume that
v1 is coloured blue. Then since it is adjacent to v1, v2 must be coloured red.
Continuing in this way, we see that vk is blue for odd k and red for even k.
But vn is adjacent to v1, and so these will have different colours precisely when
n is even.

Lemma 1.1.15. A graph G is bipartite if and only if G has no subgraphs that
are isomorphic to C2k+1

Proof. First, note that if G2 is a subgraph of G1, and G1 is bipartite, then
so is G2: colouring the vertices of G1 red and blue in particular colours the
vertices of G2 as well. Hence, we see if that G has a subgraph isomorphic to
C2k1

, which isn’t bipartite by the previous lemma, then G1 can’t be bipartite,
either.

In the other direction, we assume that G has no subgraphs isomorphic to
C2k+1; we need to prove that G is bipartite. Again, let’s try to colour the
vertices of G red and blue so that adjancent vertices have different colours.
Choose a vertex v of G, without loss of generality we may assume that v is
coloured blue; then all vertices adjacent to v – i.e., those vertices at distance
1 from v – are coloured red. The vertices adjacent to those must be blue, and
the ones adjacent to those must be red, alternating out. This suggests trying
to colour all vertices at odd distance from v red, and those vertices at even
distance from v blue. We will show that if this colouring has two vertices of
the same colour that are adjacent, then G has an odd cycle.

Assume that u and w are two vertices coloured red that are adjacent. Since
u is red, the distance from v to u is odd – there is a path v = v0 − v1 −
· · · − v2k+1 = u. Similarly, there is an odd length path from v to w: v =
w0−w1−· · ·−w2�+1 = w. Taking the union of these two subgraphs and the edge
connecting u and w, we get a closed walk consisting of (2k+1)+(2�+1)+1 =
2k+2�+3 edges, which is odd. This walk may repeat some vertices and edges,
but if it does we can split it into two smaller walks, one of which must have odd
length, and eventually we must get a closed walk of odd length that doesn’t
repeat any vertices.

The case that u and w are both coloured blue is completely analogous,
except we will be merging two paths with an even number of edges and one
extra edge to get a path with odd length.
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A special type of bipartite graph is the complete bipartite graphs Km,n,
which are the simple graphs that have as many edges as possible while still
being bipartite.

Definition 1.1.16. The complete bipartite graph Km,n is the graph with m
red vertices and n blue vertices, and an edge between very red vertex and every
blue vertex.

Example 1.1.17. The complete bipartite graph K2,2 is isomorphic to C4.

The graphs K1,3 and K4,4 are drawn below. K1,3 K4,4

1.2 Degree and handshaking

1.2.1 Definition of degree
Intuitively, the degree of a vertex is the “number of edges coming out of it”. If
we think of a graph G as a picture, then to find the degree of a vertex v ∈ V (G)
we draw a very small circle around v, the number of times the G intersects
that circle is the degree of v. Formally, we have:

Definition 1.2.1. Let G be a simple graph, and let v ∈ V (G) be a vertex of
G. Then the degree of v, written d(v), is the number of edges e ∈ E(G) with
v ∈ e. Alternatively, d(v) is the number of vertices v is adjacent to.

Example 1.2.2.

Figure 1.2.3: The graph K

In the graph K shown in Figure 1.2.3, vertices a and b have degree 2, vertex
c has degree 3, and vertex d has degree 1.

Note that in the definition we require G to be a simple graph. The notion
of degree has a few pitfalls to be careful of G has loops or multiple edges. We
still want to the degree d(v) to match the intuitive notion of the “number of
edges coming out of v” captured in the drawing with a small circle. The trap
to beware is that this notion no longer agrees with “the number of vertices
adjacent to v” or the “the number of edges incident to v”
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Example 1.2.4.

The graph G to the right has two ver-
tices, a and b, and three edges, two be-
tween a and b, and a loop at a. Vertex
a has degree 4, and vertex b has degree
2.

ab

1.2.2 Extended example: Chemistry

In organic chemistry, molecules are frequently drawn as graphs, with the ver-
tices being atoms, and an edge betwen two vertices if and only if the cor-
responding atoms have a covalent bond between them (that is, they share a
vertex).

Example 1.2.5 (Alkanes).

The location of an element on the periodic table determines the valency of
the element – hence the degree that vertex has in any molecule containing that
graph:

• Hydrogen (H) and Fluorine (F) have degree 1

• Oxygen (O) and Sulfur (S) have degree 2

• Nitrogen (N) and Phosphorous (P) have degree 3

• Carbon (C) has degree 4

Usually, most of the atoms involved are carbon and hydrogen. Carbon atoms
are not labelled with a C, but just left blank, while hydrogen atoms are left
off completely. One can then complete the full structure of the molecule using
the valency of each vertex. On the exam, you may have to know that Carbon
has degree 4 and Hydrogen has degree 1; the valency of any other atom would
be provided to you

Graphs coming from organic chemistry do not have to be simple – some-
times there are double bonds, where a pair of carbon atoms have two edges
between them.

Example 1.2.6.

If we know the chemical formula of a molecule, then we know how many
vertices of each degree it has. For a general graph, this information is known
as the degree sequence

Definition 1.2.7 (Degree sequence). The degree sequence of a graph is just
the list (with multiplicity) of the degrees of all the vertices.

The following sage code draws a random graph with 7 vertices and 10 edges,
and then gives its degree sequence. You can tweak the code to generate graphs
with different number of vertices and edges, and run the code multiple times,
and the degree sequence should become clear.

vertices = 7
edges = 10
g = graphs.RandomGNM(vertices ,edges)
g.show()
print g.degree_sequence ()
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Knowing the chemical composition of a molecule determines the degree se-
quence of its corresponding graph. However, it is possible that the same set of
atoms may be put together into a molecule in more than one different ways.
In chemistry, these are called isomers. In terms of graphs, this corresponds to
different graphs that have the same degree sequence.

An important special case is the constant degree sequence.

Definition 1.2.8 (Regular graphs). A graph Γ is d-regular, or regular of degree
d if every vertex v ∈ Γ has the same degree d, i.e. d(v) = d.

As a common special case, a regular graph where every vertex has degree
three is called trivalent, or cubic.

Some quick examples:

1. The cycle graph Cn is two-regular

2. The complete graph Kn is (n− 1)-regular

3. The Petersen graph is trivalent

1.2.3 Handshaking lemma and first applications
To motivative the Handshaking Lemma, we consider the following question.
Suppose there seven people at a party. Is it possible that everyone at the party
knows exactly three other people?

We can model the situation a graph, with vertices being people at the party,
and an edge between two vertices if the corresponding people know each other.
The question is then asking for the existence of a graph with seven vertices so
that every vertex has degree three. It is then natural to attempt to solve the
problem by trying to draw such a graph. After a few foiled attempts, we begin
to suspect that it’s not possible, but doing a case-by-case elimination of all the
possibilities is daunting. It’s easier to find a reason why we can’t draw such a
graph.

We will do this as follows: suppose that everyone at the party who knows
each other shakes hands. How many handshakes will occur? On the one hand,
from the definitions this would just be the number of edges in the graph. On
the other hand, we can count the number of handshakes working person-by-
person: each person knows three other people, and so is involved in three
handshakes. But each handshake involves two people, and so if we count
7 ∗ 3 we’ve counted each handhsake twice, and so there should be 7 ∗ 3/2 =
10.5 handshakes happening, which makes no sense, as we can’t have half a
handshake. Thus, we have a contradiction, and we conclude such a party isn’t
possible.

Euler’s handshaking Lemma is a generalization of the argument we just
made to an arbitrary graph.

Theorem 1.2.9. (Euler’s handshaking Lemma)
�

v∈V (G)

d(v) = 2|E(G)|

Proof. We count the “ends” of edges two different ways. On the one hand,
every end occurs at a vertex, and at vertex v there are d(v) ends, and so the
total number of ends is the sum on the left hand side. On the other hand, every
edge has exactly two ends, and so the number of ends is twice the number of
edges, giving the right hand side.

We have seen already seen one use of Euler’s handshaking Lemma, but it
will be particularly useful in Chapter 3, when we study graphs on surfaces.
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1.3 Graph Isomorphisms
Generally speaking in mathematics, we say that two objects are "isomorphic" if
they are "the same" in terms of whatever structure we happen to be studying.
The symmetric group S3 and the symmetry group of an equilateral triangle
D6 are isomorphic. In this section we briefly briefly discuss isomorphisms of
graphs.

1.3.1 Isomorphic graphs
The "same" graph can be drawn in the plane in multiple different ways. For
instance, the two graphs below are each the "cube graph", with vertices the 8
corners of a cube, and an edge between two vertices if they’re connected by an
edge of the cube:

Figure 1.3.1: Two drawings of the cube graph

Example 1.3.2. It is not hard to see that the two graphs above are both draw-
ings of the cube, but for more complicated graphs it can be quite difficult at
first glance to tell whether or not two graphs are the same. For instance, there
are many ways to draw the Petersen graph that aren’t immediately obvious to
be the same.

This animated gif created by Michael Sollami for this Quanta Magazine arti-
cle on the Graph Isomorphism problem illustrates many different such drawings
in a way that makes the isomorphisms apparent.

Definition 1.3.3. An isomorphism ϕ : G → H of simple graphs is a biject
ϕ : V (G) → V (H) between their vertex sets that preserves the number of edges
between vertices. In other words, ϕ(v) and ϕ(w) are adjacent in H if and only
if v and w are adjancent in G.

Example 1.3.4.

Figure 1.3.5: C5 is isomorphic to its complement Cc
5

The cycle graph on 5 vertices, C5 is isomorphic to its complement, Cc
5. The

cycle C5 is usually drawn as a pentagon, and if we were then going to naively
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draw Cc
5 we would draw a 5-sided star. However, we could draw Cc

5 differently
as shown, making it clear that it is isomorphic to C5, with isomorphism ϕ :
C5 → Cc

5 defined by ϕ(a) = a,ϕ(b) = c,ϕ(c) = e,ϕ(d) = b,ϕ(e) = d.

Although solving the graph isomorphism problem for general graphs is quite
difficult, doing it for small graphs by hand is not too bad and is something you
must be able to do for the exam. If the two graphs are actually isomorphic,
then you should show this by exhibiting an isomrophism; that is, writing down
an explicit bijection between their vertex sets with the desired properties. The
most attractive way of doing this, for humans, is to label the vertices of both
copies with the same letter set.

If two graphs are not isomorphic, then you have to be able to prove that they
aren’t. Of course, one can do this by exhaustively describing the possibilities,
but usually it’s easier to do this by giving an obstruction – something that is
different between the two graphs. One easy example is that isomorphic graphs
have to have the same number of edges and vertices. We’ll discuss some others
in the next section

1.3.2 Heuristics for showing graphs are or aren’t isomor-
phic

Another, only slightly more advanced invariant is the degree sequence of a
graph that we saw last lecture in our discussion of chemistry.

If ϕ : G → H is an isomorphism of graphs, than we must have d(ϕ(v)) =
d(v) for all vertices v ∈ G, and since isomorphisms are bijections on the vertex
set, we see the degree sequence must be preserved. However, just because two
graphs have the same degree sequences does not mean they are isomorphic.

Slightly subtler invariants are number and length of cycles and paths.

1.3.3 Cultural Literacy: The Graph Isomorphism Prob-
lem

This section, as all "Cultural Literacy" sections, is information that you may
find interesting, but won’t be examined.

The graph isomorphism problem is the following: given two graphs G and
H, determine whether or not G and H are isomorphic. Clearly, for any two
graphs G and H, the problem is solvable: if G and H both of n vertices, then
there are n! different bijections between their vertex sets. One could simply
examine each vertex bijection in turn, checking whether or not it maps edges
to edges.

The problem is interesting because the naive algorithm discussed above is
not very efficient: for large n, n! is absolutely huge, and so in general this
algorithm will take a long time. The question is, is there are a faster way to
do check? How fast can we get?

The isomorphism problem is of fundamental importance to theoretical com-
puter science. Apart from its practical applications, the exact difficulty of the
problem is unknown. Clearly, if the graphs are isomorphic, this fact can be
easily demonstrated and checked, which means the Graph Isomorphism is in
NP.

Most problems in NP are known either to be easy (solvable in polynomial
time, P), or at least as difficult as any other problem in NP (NP complete).
This is not true of the Graph Isomorphism problem. In November of last
year, Laszlo Babai announced a quasipolynomial-time algorithm for the graph
isomorphism problem – you can read about this work in this great popular
science article.
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1.4 Instant Insanity
So far, our motivation for studying graph theory has largely been one of philos-
ophy and language. Before we get too much deeper, however, it may be useful
to present a nontrivial and perhaps unexpected application of graph theory; an
example where graph theory helps us to do something that would be difficult
or impossible to do without it.

1.4.1 A puzzle

Figure 1.4.1: Instant Insanity Package

There is a puazzle marketed under the name "Instant Insanity", one version
of which is shown above. The puzzle is sometimes called "the four cubes
problem", as it consists of four different cubes. Each face of each cube is
painted one of four different colours: blue, green, red or yellow. The goal of
the puzzle is to line the four cubes up in a row, so that along the four long
edges (front, top, back, bottom) each of the four colours appears eactly once.

Depending on how the cubes are coloured, this may be not be possible, or
there may be many such possibilities. In the original instant insanity, there is
exactly one solution (up to certain equivalences of cube positions). The point
of the cubes is that there are a large number of possible cube configurations,
and so if you just look for a solution without being extremely systematic, it is
highly unlikely you will find it.

But trying to be systematic and logical about the search directly is quite
difficult, perhaps because we have problems holding the picture of the cube in
our mind. In what follows, we will introduce a way to translate the instant
insanity puzzle into a question in graph theory. This is obviously in no way nec-
essary to solve the puzzle, but does make it much easier. It also demonstrates
the real power of graph theory as a visualization and thought aid.

There are many variations on Instant Insanity, discussions of which can be
found here and here. There’s also a commercial for the game.

1.4.2 Enter graph theory
It turns out that the important factor of the cubes is what color is on the
opposite side of each face. Suppose we want face one facing forward. Then
we have four different ways to rotate the cube to keep this the same. The
same face will always appear on the opposite side, but we can get any of the
remaining four faces to be on top, say.
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Figure 1.4.2: An impossible set of cubes

Let us encode this information in a graph. The vertices of the graph will
be the four colors, B, G, R and Y. We will put an edge between two colors
each time they appear as opposite faces on a cube, and we will label that edge
with a number 1-4 denoting which cube the two opposite faces appear. Thus,
in the end the graph will have twelve edges, three with each label 1-4. For
from the first cube, there will be a loop at B, and edge between G and R, and
an edge between Y and R. The graph corresponding to the four cubes above
is the following:

Figure 1.4.3: The graph constructed from the cubes in Figure 1.4.2

1.4.3 Proving that our cubes were impossible

We now analyze the graph to prove that this set of cubes is not possible.
Suppose we had an arrangement of the cubes that was a solution. Then,

from each cube, pick the edge representing the colors facing front and back on
that cube. These four edges are a subgraph of our original graph, with one
edge of each label, since we picked one edge from each cube. Furthermore,
since we assumed the arrangement of cubes was a solution of instant insanity,
each color appears once on the front face and once on the back. In terms of
our subgraph, this translates into asking that each vertex has degree two.

We can get another subgraph satisfying these two properties by looking at
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the faces on the top and bottom for each cube and taking the corresponding
edges. Furthermore, these two subgraphs do not have any edges in common.

Thus, given a solution to the instant insanity problem, we found a pair of
subgraphs S1, S2 satisfying:

1. Each subgraph Si has one edge with each label 1,2,3,4

2. Every vertex of Si has degree 2

3. No edge of the original graph is used in both S1 and S2

As an exercise, one can check that given a pair of subgraphs satisfying 1-3, one
can produce a solution to the instant insanity puzzle.

Thus, to show the set of cubes we are currently examining does not have a
solution, we need to show that the graph does not have two subgraphs satisfying
properties 1-3.

To do, this, we catalog all graphs satisfying properties 1-2. If every vertex
has degree 2, either:

1. Every vertex has a loop

2. There is one vertex with a loop, and the rest are in a triangle

3. There are two vertices with loops and a double edge between the other
two vertices

4. There are two pairs of double edges

5. All the vertices live in one four cycle

6. A subgraphs of type 1 is not possible, because G and R do not have
loops.

For subgraphs of type 2, the only triangle is G-R-Y, and B does have loops.
The edge between Y-G must be labeled 3, which means the loop at B must be
labeled 1. This means the edge between G and R must be labeled 4 and the
edge between Y and R must be 2, giving the following subgraph:

Figure 1.4.4: A subgraph for a solution for one pair of faces

For type 3, the only option is to have loops at B and Y and a double edge
between G and R. We see the loop at Y must be labeled 2, one of the edges
between G and R must be 4, and the loop at B and the other edge between G
and R can switch between 1 and 3, giving two possibilities:
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Figure 1.4.5: Two more subgraphs for a partial solutions

For subgraphs of type 4, the only option would be to have a double edge
between B and G and another between Y and R; however, none of these edges
are labeled 3 and this option is not possible.

Finally, subgraphs of type 5 cannot happen because B is only adjacent to
G and to itself; to be in a four cycle it would have two be adjacent to two
vertices that aren’t itself.

This gives three different possibilities for the subgraphs SiSi that satisfy
properties 1 and 2. However, all three possibilities contain the the edge labeled
4 between G and R; hence we cannot choice two of them with disjoint edges,
and the instant insanity puzzle with these cubes does not have a solution.

1.4.4 Other cube sets
The methods above also give a way to find the solution to a set of instant
insanity cubes should one exist. I illustrate this in the following Youtube

video: Other cube sets
www.youtube.com/watch?v=GsbhRfjaaN8

1.5 Exercises
1. For each of the following sequences, either give an example of such a graph,
or explain why one does not exist.
(a) A graph with six vertices whose degree sequence is [5, 5, 4, 3, 2, 2]

(b) A graph with six vertices whose degree sequence is [5, 5, 4, 3, 3, 2]

(c) A graph with six vertices whose degree sequence is [5, 5, 5, 5, 3, 3]

(d) A simple graph with six vertices whose degree sequence is [5, 5, 5, 5, 3, 3]

2. For the next Olympic Winter Games, the organizers wish to expand the
number of teams competing in curling. They wish to have 14 teams enter,
divided into two pools of seven teams each. Right now, they’re thinking of
requiring that in preliminary play each team will play seven games against
distinct opponents. Five of the opponents will come from their own pool and
two of the opponents will come from the other pool. They’re having trouble
setting up such a schedule, so they’ve come to you. By using an appropriate
graph-theoretic model, either argue that they cannot use their current plan or
devise a way for them to do so.

3. Figure 1.5.1 contains four graphs on six vertices. Determine which (if any)
pairs of graphs are isomorphic. For pairs that are isomorphic, give an iso-
morphism between the two graphs. For pairs that are not isomorphic, explain
why.
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Figure 1.5.1: Are these graphs isomorphic?

4. Let G be a simple graph with n vertices and degree sequence a1, a2, . . . , an.
What’s the degree sequence of its complement Gc?

5. Let G be the graph with graph with vertices consisting of the 10 three
element subsets of {a, b, c, d, e}, and two vertices adjacent if they share exactly
one element. So, for example, the two vertices v = {a, c, e} and w = {b, c, d}
are adjacent, but neither v or w is adjacent to u = {a, b, c}.
Draw G in a way that shows it is isomorphic to the Petersen graph.
Now let H be the graph with vertices consisting of the 10 two element subsets
of {a, b, c, d, e}, and two vertices adjacent if they share no elements. Without
drawing H, write down an isomorphism between G and H. Hint: There’s a
"natural" bijection between the two and three element subsets of {a, b, c, d, e}
6. Recall that Gc denotes the complement of a graph G. Prove that f : G → H
is an isomorphism of graphs if and only if f : Gc → Hc is an isomorphism.

7. Determine the number of non-isomorphic simple graphs with seven vertices
such that each vertex has degree at least five.

Hint. Consider the previous exercise

8. Consider the standard Instant Insanity puzzle, with four cubes and four
colours. Explain why one would expect there to be 331,776 different cube
configurations. Further explain why there would be fewer configurations if any
cubes are coloured with symmetries.
In the text, we solve the puzzle by finding certain pairs of subgraphs. As-
suming that none of the cubes are coloured symmetrically, explain why each
pair of subgraphs corresponds to at least 8 different cube configurations that
are actually solutions, and why, depending on the isomorphism type of the
subgraphs found, there may be more solutions.

9. Variations of the Insant Insanity puzzle increase the number of cubes and
the number of colours. Explain how to modify our graph theoretic solution to
solve the puzzle when we have n cubes, each face of which is coloured one of
n colours, and we want to line up the cubes so that each of the top, bottom,
front and rear strings of cubes displays each of the n colours exactly once.

10. Use the method from the previous question to solve the following set of six
cubes, marketed under the name "Drive ya crazy", where each face is coloured
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either blue, cyan, green, orange, red, or yellow.

C

G
B

R
Y

O

Cube 1
B
G
Y
O

R C

Cube 2
O
R
C
B

G Y

Cube 3

R
C
B
G

Y O

Cube 4
G
Y
O
R

C B

Cube 5
Y
O
R
C

B G

Cube 6

Figure 1.5.2: The six cubes from "Drive Ya crazy"
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