
MAS 341: GRAPH THEORY

2016 EXAM SOLUTIONS

1. Question 1

1.1. Explain why any alkane CnH2n+2 is a tree. How many isomers does C6H14

have? Draw the structure of the carbon atoms in each isomer.
5 marks; 3 marks for proving a tree (1 for connected!), 2 marks for finding and

drawing the 5 possibilities.

Proof. Carbon has valency 4, and hydrogen has valency 1. CnH2n+2 has 3n + 2
vertices. Using the handshaking lemma, we can calculate the number of edges as
half the total degree, which is 4n+ 2n+ 2 = 6n+ 2. Thus, there are 3n+ 1 edges in
CnH2n+2, one less than the number of vertices. Since a molecule is automatically
connected, the graph must a tree.

To find all the isomers of C6H14, draw the carbon atoms – this will be a tree
on 6 vertices, with each vertex having degree at most 4. They could be a chain
of 6 carbon atoms, a chain of five carbon atoms with 1 other one poking off (from
the central vertex of chain, or from next to edge, giving 2 combinations). Finally,
it could be a chain of 4 vertices, with the two extra either attached to the same
vertex or different. The maximal chain length cannot be 3, as then there would be
one central vertex which would have to have degree 5. This gives 5 possibilities,
illustrated below:

�

1.2. Consider the graph G given below. Is G Eulerian? Is G Hamiltonian? Is G
bipartite? Justify your answers.
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6 Marks, 2 for each part, 1 for right answer but
incomplete justification.

Proof. G is not Eulerian, as it has 4 vertices with odd degree (namely 3).
G is not Hamiltonian – locally near each of the vertices of degree 2, a Hamiltonian

path would have to just be forced to be straight through. Together, these give a
cycle around the outside of the cube, which misses the interior vertex.
G is bipartite, as it has no odd cycles – color the central vertex and the three

vertices of degree two blue, color the other three vertices red.
�

1.3. Prove that the following set of instant insanity cubes have no solution.
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9 marks; 4 for making graph(s) from the cubes, 5 for arguing from this.

Proof. We make a graph with 4 vertices corresponding to the four colors Blue,
Green, Red and Yellow, with an edge labeled i between two colors if they occur on
opposite faces of cube i. That gives the following graph:

B G

Y R
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2
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3

1,2,4
3,4

2

1

To select the colors that are on the top/bottom (alternatively, Front/back), we
need to find a subgraph that has degree two at every vertex (uses each color twice)
and contains one edge with each label 1-4 (uses all the cubes).

There are no four cycles that do this; and no pairs of multiple edges, no sets of
four loops, and no pairs of loops + a multiple edge. There are only three cycles +
a loop, and only two possibilities, shown below:
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However, the faces appearing on top/bottom and front/back must be disjoint,
while both of these solutions contain the edge 4 from G to Y.

�

1.4. Give the Prüfer code for the labelled tree T below.

1 2 3

4 5 6

7 8 9
5 marks; 3 for doing generally the right thing but

a minor mistake.

Proof. Continually removing the lowest marked leaf, and recording it and its parent,
we obtain

Parent 1 4 6 4 5 5 6 9
Child 2 1 3 7 4 8 5 6

Recording the first n−2 = 7 parent nodes gives the Prüfer code, in this case 1,4,6,4,
5,5,6.

�

2. Question 2

Consider the following directed, weighted graph:
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2.1. What is the length s of the shortest path from A to I? For which edges e will
shortening e by 0.1 change s? For which edges e will making e longer by 0.1 change
s?

8 Marks; 4 for finding length of shortest path and a possible shortest path, 2 for
finding all the shortest paths, 1 each for going from there to important edges.

Proof. The shortest path from A to any other point can be solved all at once using
Dijkstra’s algorithm:
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We see the minimum distance from A to I is 21. There are 3 possible such paths:
ACFHI, ABFHI, and ABDHI. Increasing an edge length will increase the length of
the shortest path if and only if it is in every shortest path – this is only the edge
HI. Decreasing the length of an edge will decrease the length of a shortest path if
it is in any shortest path, thus, the edges AB, AC, CF, BF, BD, FH, DH, and HI
all work.

�

2.2. What is the length ` of the longest path from A to I? For which edges e will
shortening e by 0.1 change `? For which edges e will making e longer by 0.1 change
`?

8 Marks; 4 for finding length of longest path and a possible longest path, 2 for
finding all the longest paths, 1 each for going from there to important edges.

Proof. The longest path algorithm is similar to Dijkstra’s algorithm, but depends
on the graph being directed acyclic – we first extend to a total order (ABCDEFGHI
works), then find the longest path from A to the given vertex one by one. The result
is as follows:
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We see the maximum path length ` is 25, given by two possible paths – both
start ABCEGI, or ABCEGHI. Increasing an edge e increases ` if and only if e is in
*any* longest path, and so the edges AB, BC, CE, EG, GI, GH, and HI would all
work. Decreasing an edge e decreases ` if and only if e is in *every* longest path,
and so only the edges AB, BC, CE, and EG have this result.

�

2.3. The graph Γ is shown below. Find the chromatic number and the chromatic
index of Γ.

5 marks. 2 for chromatic number, split as 1 for colouring, 1 for not bipartite. 3
for chromatic index, split as 1 for colouring, 2 for explaining why 3 isn’t possible.

Proof. Since Γ contains triangles, the chromatic number is at least 3. A colouring
using three colours is shown below:

R

B

G R G

R

B

The chromatic index is the number of colours needed to colour the edges. Since
Γ contains vertices of degree 3, the is at least 3, and is actually equal to 3 or 4 by
Vizing’s theorem.

For Γ, this number turns out to be four – the two central edges are adjacent, and
so must be different colours, say R for the left and and G for the right. Then the
two triangles at either end must contain all three colours, with the vertical edges
at left and right being R and G, respectively. To be coloured in three colours, the
top and bottom edges would then both have to be coloured blue, but some of the
diagonal edges of the triangle must be blue, making this not possible. If we colour
the top and bottom edges a fourth colour, though, we see the chromatic index is 4.

�
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2.4. A finite tree T has at least one vertex v of degree 4, and at least one vertex
w of degree 3. Prove that T has at least 5 leaves.

4 Marks.

Proof. We give two proofs. One proof is as follows – since T is connected, there is
a path from v and w. Besides this path, there are 3 edges coming out of v, and 2
more edges coming out of w. We build a path starting from each of these edges.
If the immediate next vertex is a leaf, we are done. If not, we can continue the
path to another edge. Since Γ is a tree, we will never repeat a vertex or join to a
vertex contained in one of the other paths, since that would create a loop. Since Γ
is finite, the path must eventually terminate, in a leaf.

The second proof uses the handshaking lemma. Suppose T has n vertices, since
it is a tree, it must then have n − 1 edges. Let ki by the number of vertices of
degree i; we have

∑
ki = n since there are n vertices, and

∑
iki = 2n − 2 by the

handshaking lemma. Subtracting twice the first equation from the second, we ahve∑
(i − 2)ki = −2. Only vertices of degree 1, namely leaves, contribute negatively

to the sum; the vertex v of degree 4 contributes +2, and the vertex w of degree
3 contributes +1, so there is a positive contribution of at least 3, so the negative
contribution must be at least -5, meaning there are at least 5 leaves.

�

3. Problem 3

3.1. Weights are given for edges between 7 vertices, labelled A−G.

A
11 B
17 9 C
17 12 14 D
11 17 15 10 E
16 9 9 10 8 F
20 10 21 19 8 12 G

Find a minimal weight spanning tree. What is the total weight of this spanning
tree?

5 marks, 3 for generally knowing Kruskal’s algorithm and trying to do it, 2 for
mistakes.

Proof. We use Kruskal’s algorithm, continually adding the lowest weight edge that
doesn’t create a loop. There are two edges of weight 8, EF and EG. The three edges
of weight 9 BC, BF, and CF, create a triangle, and so two of them are added. The
two edges of weight 10 both connect D to an edge already in the large component
(E or F), and so exactly one of them gets added; similarly, the two edges of weight
11 each connect A to an edge in the main graph, and so one of them is added. This
gives a total weight of 16+18+10+11=55.

�

3.2. In total, how many spanning trees have the same minimum weight?
4 marks, 2 for general idea.

Proof. The only choice in spanning tree is when edges have tied weight. We had to
choose one of the three edges of weight 9 not to add, one of the two edges of weight
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10 not to add, and one of the two edges of weight 11 not to add, for 3*2*2=12 total
choices. �

3.3. Now, suppose the vertices represent towns, and the weights represent the cost
of traveling between towns. A traveling salesperson lives in an 8th town, H; the
cost of traveling from H to any town other is 25. The traveling salesperson wants
to start at H, travel to every town A − G exactly once, and then return to H, as
cheaply as possible. Using your result from the previous part, give a lower bound on
the cost of the traveling salesperson’s trip. Is this lower bound attainable? Explain.

5 marks; 3 for the lower bound, 2 for explaining why it is not attainable.

Proof. Deleting the vertex H from a solution to the TSP gives a path through
the remaining vertices, and in particular a spanning tree. The minimal weight
spanning tree has weight 55 from Part (i), and hence any solution to the TSP must
have weight at least 55+25+25=105.

This minimum is attained if and only if there is a spanning tree that is a path;
however, looking through the 12 possibilities in part 2 we see none of them are a
path – the vertices A, D and G have degree 1 in any of the minimal spanning trees.

�

3.4. Using the nearest neighbour heuristic starting at H and traveling first to G,
give an upper bound on the cost of the cheapest trip for the traveling salesperson.

3 marks, 2 for general idea of heuristic.

Proof. The cost of H−G is 25. From G and continually travel to the cheapest city
we haven’t yet been to. G-E-F is forced at cost 16. We can then go BCDAH for
cost 9+9+14+17+25=74, and total cost 25+16+74=115, or we could go CBADH
for cost 9+9+11+17+25=71, and total cost 112. �

3.5. Draw the Petersen graph, and prove it is not Hamiltonian. (Hint, suppose it
was Hamiltonian, and consider the edges not in the Hamiltonian cycle).

8 marks; 3 for setting up hint and each vertex needing an extra edge, 2 for what
no loops, triangles, four cycles tells us, 3 for finishing.

Proof. Drawing not included; see proof in lecture notes.
The Petersen graph has 10 vertices and 15 edges, and every vertex has degree 3.

Suppose it was Hamiltonian, with Hamiltonian cycle v0−v1−v2−· · ·−v8−v9. This
uses 10 edges, there are 5 edges left, with every vertex being included on exactly
one.

We consider, WLOG, the extra edge adjacent to v0; it can’t be a loop, or be an
edge to v1 or v2, as the Petersen graph is simple. It can’t be to v2 or v8 as the
Petersen graph has no triangles, and it can’t be to v3 or v7 as the Petersen graph
has no 4 cycles. Thus, the only possibilities are v4, v5 or v6; similarly, there are 3
possible choices for the extra edge at any vertex.

We first prove that not all edges can connect opposite edges: if they did, there
would be 4 cycles (e.g., v0 − v1 − v6 − v5 − v0. So, there is at least one vertex not
connected to its opposite vertex, say v0−v4. We now consider what v5 is connected
to: it can’t be v0, as that would be make v0 have degree 4. But connecting it to
either v9 or v1 makes a 4 cycle.

�



8 MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

4. Question 4

4.1. State Kuratowski’s theorem, and use it to show that the graph G below is
not planar. Draw G on the projective plane without edges crossing. Your drawing
should use the labelling of the vertices given.

A B

C

DE

F

G

10 Marks, two for stating the theorem, 4
each for applying it and drawing the graph.

Proof. Kuratowski’s theorem states that a graph is not planar if and only if it
contains a subgraph homeomorphic to K3,3 or K5.

To use Kuratowski’s theorem for this graph, we note that the six vertices A−F
in the hexagon are almost a K3,3 with vertices A,C,E one colour and B,D,F the
other colour. The only edge missing is from B to E, but taking B − G − E gives
this edge.

To draw G on the projective plane without edges crossing, we turn the hexagon
“inside out”, so that the one edge crossing between A − D and F − C occurs at
infinity (opposite points on the boundary of the circle are identified):

A

B

C

DE

F G

�
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4.2. Define the Euler characteristic χ(S) of a closed, compact surface S and prove
it is well defined. Use your drawing of G to calculate the Euler characteristic of the
projective plane.

11 marks, 3 for defining Euler characteristic (need edges don’t cross, that faces
are disks), 6 for proving, and 2 using their graph to calculate the euler characteristic.

Proof. to define the Euler characteristic, suppose that a graph G with v vertices
and e edges is drawn on S so that that the edges don’t cross and S \G consists of f
“faces”, each isomorphic to a disk. Then the Euler charactierstic χ(S) = v− e+ f .

To see this is well defined, suppose that G1 and G2 are two graphs embedded
this way on S, with vi vertices, ei edges, and fi faces, then we have v1 − e1 + f1 =
v2− e2 + f2. To prove this statement, we begin with the observation from topology
that any two graphs have a common refinement H, and that Gi can be transformed
into H by a sequence of basic moves: removing/adding an edge joining two distinct
faces, and, and removing/adding vertices of degree two along an edge.

The key point is that both basic movies keep v−e+f unchanged: the first move
decreases e and f by one each, and keeps v unchanged, while the second move
decreases e and v by one each and keeps f unchanged.

The Euler characteristic of the projective plane is 1 – our drawing of G has 6
faces – ABGEF , ABC, BCG, CDEG, ACFED and CDAF . G has 7 vertices
and 12 edges, and so χ = 7− 12 + 6 = 1.

�

4.3. Consider the graph Γ drawn below on the torus, with its faces labeled A
through H. Give a colouring of the faces of Γ with four colours so that faces meeting
along an edge have different colours. Prove that no such colouring is possible with
only three colours.

A

A A

A

B

B

C

C

D D

E F

G

G

H

4 marks, 2 each for colouring and proof that 3 isn’t possible.

Proof. Most pairs of faces share an edge, and hence must be different colours.
Listing the exceptions, we see A and F are not adjacent, and hence both can be
coloured blue, B and G are not adjacent and hence both can be coloured green, C
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and E are not adjacent and hence both can be coloured red, and D and H are not
adjacent and hence both can be coloured yellow.

To see that no colouring with only three colours are possible, consider the four
faces C,D, F, G (or any set of one face from each of the 4 pairs listed above). Each
pair of faces in this set share an edge, and hence cannot be the same colour, thus
at least 4 colours are necessary.

�

5. Question 5

Recall that the Wheel graph Wn consisted of a copy of the cycle graph Cn−1,
together with a central vertex v adjacent to every other vertex. We define the
Broken Wheel graph BWn, to be the Wheel graph Wn with one edge from the
outer cycle removed – we have drawn W7 and BW7 below.

W7 BW7

5.1. Give the definition of the chromatic polynomial PG(k). Directly from the
definition, prove that the chromatic polynomials of Wn and Cn satisfy the identity:

PWn
(k) = kPCn−1

(k − 1)

5 Marks, 2 for definition of chromatic polynomial, 3 for proof.

Proof. PWn
(k) is the number of ways to colour the wheel graph Wn with k colours

so that adjacent vertices have different colours. There are k ways to colour the
central vertex. The central vertex is adjacent to every other vertex, and so having
used one colour for the central vertex, we will only use k − 1 colours in the rest of
the vertices, which exactly form the cycle graph Cn−1. Thus, having coloured the
central vertex, there are PCn−1(k − 1) ways to colour the remaining vertices, and
we have PWn

(k) = kPCn−1
(k − 1).

�

5.2. Prove that
PBWn(k) = k(k − 1)(k − 2)n−2

5 Marks

Proof. Proof 1: begin by colouring the central vertex one of k colours. Go then to
one of the vertices on the rim, adjacent to the “missing edge”; this vertex is adjacent
to the central vertex, and thus has k − 1 available colours. We now travel along
the central rim, vertex by vertex: each vertex is adjacent to the central vertex, and
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the previous vertex on the rim we have just coloured, and hence has k− 2 possible
colourings. There are n − 2 such vertices, and so the total number of possible
colourings is k(k − 1)(k − 2)n−2, as desired.

Alternatively, we see that BWn is obtained from BWn−2 by gluing a triangle
together on a common edge. This gives PBWn

(k) = PBWn−1
(k)PC3

(k)/[k(k −
1)]. We have PC3

(k) = k(k − 1)(k − 2), and so this simplifies to PBWn
(k) =

PBWn−1(k)(k − 2). Using the fact that BW3 = C3, and induction gives the result.
�

5.3. Prove that
PWn

(k) = PBWn
(k)− PWn−1

(k)

Using this, the previous part, and induction, prove that, for n ≥ 4, we have:

PWn
= k(k − 2)

[
(k − 2)n−2 + (−1)n−1

]
10 Marks, 4 for first statement, 6 for second part.

Proof. For G any graph, and e an edge of G, recall that G \ e denotes the graph
with the edge e removed, and G/e denotes the graph G with an edge removed. We
have the following relation on their chromatic polynomials:

PG\e(k) = PG(k) + PG/e(k)

where the two terms on the right count colourings of G \ e where the two vertices
of e get different or the same colours, respectively. Taking G to be Wn, and e to be
an edge on the outer cycle, we have G\e = BWn, while G/e = Wn−1. Substituting
these in, and doing a little algebra, gives PWn+1(k) = PBWn(k)−Wn−1 as desired.

We prove the second identity by induction. For n = 4, we have that W4 = K4

is the complete graph, which has PK4
(k) = k(k − 1)(k − 2)(k − 3). Plugging n = 4

into the right hand side gives k(k − 2)[(k − 2)2 − 1] = k(k − 2)(k2 − 4k + 4− 1) =
k(k − 2)(k − 3)(k − 1), proving the base case.

Now, for the inductive hypothesis, assume we have proven that PWn(k) = k(k−
2)[(k − 2)n−2 + (−1)n−1], and consider PWn+1(k). We have from the first part of
this problem that PWn+1

(k) = PBWn+1
(k)−PWn

. From the previous part, we know
PBWn+1(k) = k(k − 1)(k − 2)n−1. From the inductive hypothesis, we know that
PWn(k) = k(k − 2)[k − 2]n−2 + (−1)n−2. Putting these together, we have

PWn+1(k) = PBWn+1(k)− PWn(k)

= k(k − 1)(k − 2)n−1 − k(k − 2)
[
(k − 2)n−2 + (−1)n−1

]
= k(k − 2)

[
(k − 1)(k − 2)n−2 − (k − 2)n−2 + (−1)n

]
= k(k − 2)

[
(k − 2)n−1 + (−1)n

]
completing the proof. �

5.4. A graph G has chromatic polynomial PG(k) = k4−4k3 +5k2−2k. How many
vertices and edges does G have? Is G bipartite? Justify your answers.

5 Marks, 3 for vertices and edges, 2 for bipartite.

Proof. The degree of the chromatic polynomial is the number of vertices, and so G
has 4 vertices.

If G has e edges and n vertices, the coefficient of kn−1 in PG(k) is −e, and so G
has 4 edges.
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Being bipartite is equivalent to G having a colouring with only two colours. By
definition, the PG(2) is the number of colourings of G with 2 colours. We have
PG(2) = 24 − 4 · 23 + 5 · 22 − 2 · 2 = 16− 32 + 20− 4 = 0, and so G is not bipartite.

�


