
MAS 341: GRAPH THEORY

2016 EXAM SOLUTIONS

1. Question 1

Part i. There are many Hamiltonian cycles; e.g., ABLKJEDFIHGC.
We now show that if we remove vertex D, the result G\{D} is not hamiltonian.
Note first that G is trivalent, so removing D makes the vertices adjacent to it,

namely, C,E and F , all have degree two. Thus, any Hamiltonian path in G \ E
would have to use ACG, HFI, BEJ , or their reverses.

As a result of this, we see the edge HI cannot be included in a Hamiltonian cycle,
as this would produce instead the three cycle HFI. But as H and I have degree 3,
this means the edges HG, and IJ , must be included in any Hamiltonian cycle of
G \ E. Thus, we see any Hamiltonian cycle would have to include ACGHFIJEB
or its reverse. But now consider vertex K, which is adjacent to G, J and L. The
Hamiltonian cycle already visits G and J , and so we cannot include an edge from
K to either of these vertices, and so K cannot be included in a Hamiltonian cycle,
and hence there cannot be one.

Part ii. A graph G is Eulerian if it has a walk that uses every edge exactly once.
Euler’s theorem says that a connected graph G is Eulerian if and only if the degree
of every vertex is even.

Suppose that G is connected and every vertex of G has even degree. First, note
that we can construct a closed walk in G that does not repeat any edges: simply
start from any vertex v and start walking. When our path enters a new vertex, it
uses up an edge, and when it leaves a new vertex it uses up another, and so we will
always use up an even number of edges; thus, whenever we arive at a new vertex
w there will always be a vertex to leave by unless we have returned back to v.

Now we can prove G is Eulerian by induction on the number of edges in the
graph. If G has no edges, it is just a single vertex, and the theorem is trivial.
Assume that G has m edges and all graphs with less than m edges are Eulerian.
From the above, G has a closed walk w that doesn’t repeat edges. Considering the
graph G′ obtained by deleting all the edges of w. Each connected component of
G′ has vertices only of even degree, and has fewer than m edges, and so has an
Eulerian cycle. We can obtain an Eulerian cycle for G by stitching together w with
the eulerian cycle for each component of G′

Part iii. By definition, a graph G is semi-Eulerian if it has a (not necessarily
closed) walk that uses every edge exactly once.

The analog of Euler’s theorem is that a connected graph G is semi-Eulerian if
and only if it has at most two vertices of odd degree.

To prove this condiition is necessary, suppose G had a semi-Eulerian walk w that
starts at u and ends at v. Whenever a vertex appears in W besides the endpoints,
the walk uses up two edges; since every edge is used, every vertex except perhaps
u and v must have even degree.
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Part iv. There are six unlabelled trees on six vertices, shown below:

One way to be systematic is to consider the largest degree of any vertex; a
different way is to consider the length of the longest path in T.

To count labelled trees, we use Cayley’s theorem: there are nn−2 labelled trees
on n vertices, and hence 64 = 1296 labelled trees on six vertices.

Question 2

Part i. The tasks assemble into the following directed, weighted graph:
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The numbers in the ver-
tices are the lengths of the longest paths to that vertex, obtained from running the
longest path algorithm; thus, the project takes 26 days.

There are in fact two longest paths that take 26 days: BFKM and CGKM. If
any task in any longest edge runs over, the entire project runs over, hence the six
tasks BCFGKM would make the project run over.

Part ii. To shorten the project, we must shorten the length of an edge that’s
contained in EVERY longest path, hence only the two edges K and M could shorten
the project. However, while KM costs 13, the path JL costs 12, so even if we shorten
K or M by two days, we only shorten the length of the whole project by one day.
Hence, shortening K or M shorten the entire project by 1 day, and there are no
tasks for which shortening them shortens the entire project by two days.

Part iii. The traveling salesman problem is the following: given a weighted graph
(G,w), find the cheapest Hamiltonian cycle in G. A lower bound for the TSP may
be obtained as follows: choose a vertex v of G. Find a minimal spanning tree T of
G \ v – this can be easily done using Kruskal’s algorithm. Let e and f be the two
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edges out of v with smallest weight. Then w(T ) +w(e) +w(f) is a lower bound for
the TSP.

Part iv. To prove that this is in fact a lower bound, let

v = v0
e1→ w1

e2→ w2
e3→ · · · en→ wn = v

be a Hamiltonian cycle. We see that since e0 and en are two different edges incident
to v, we have w(e0) + w(e1) > w(e) + w(f) since e and f were the two cheapest
edges incident to v. Since w1, · · · , wn are all the vertices of G \ v, the walk

w2
e2→ w3

e3→ · · · en−1→ wn−1

is a spanning tree of G\v, and so we have that w(e1)+w(e2)+ . . . w(en−1) > w(T ).
Adding these two inequalities gives the desired result.

Part v. Consider a weighted graph G on vertices a, b, c, d, where edges ad and bd
had weight 10, and all other edges (namely ab, ac, bc, cd) had weight 1. Run the
algorithm described by forgetting the vertex a. Then, the two cheapest edges out
of a (namely ab and ac) both have weight 1. Meanwhile, the cheapest spanning
tree of G \a has weight 2 (containing bc and cd). Thus, the algorithm gives a lower
bound of 4 for the TSP.

It is easy to see that this bound cannot be obtained by considering the vertex d
– it is incident to three edges, with weights 1, 10 and 10, and so when we visit d
we must use edges worth at least 11.

Question 3.

Part i. Kuratowski’s theorem states that a graph G is nonplanar if and only if it
has a subgraph that’s a subdivision of K5 or K3,3. If we colour ACE red and BGF
blue, then we almost have a K3,3: A and C are adjacent to all of BFG, and the
only edge we are missing is BE, which can be connected through D.

Part ii. Deleting any of the 10 edges used in the above will result in a planar
graph; a planar embedding of the result should be given for full justification.

Part iii. Deleting either of the two edges edge not used in part (i) – namely,
DC and DF – will result in a graph that still contains a subdivision of K3,3 as a
subgraph and hence cannot be planar.

Part iv. We’ve only drawn part of the boundary of the projective plane.

A B C

D

G E F
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Part v. Suppose that G is drawn on the sphere with v vertices, e edges, p pen-
tagonal faces, and h heptagonal faces, for p + h total faces. Euler’s theorem gives
v − e + p + h = 2. Since each vertex of G has degree 3, the handshaking lemma
gives 3v = 2e. Handshaking between edges and faces gives 5p + 7h = 2e. Hence,
3v = 2e = 5p + 7h, and we may eliminate v and e from Euler’s theorem to obtain
an equation between p and h; the slickest way is to multiply euler’s equation by 6
to get 6v − 6e+ 6p+ 6h = 12, But 6v − 6e = −5p− 7h, which gives p− h = 12 as
desired.

Question 4

Part i. The chromatic polynomial χG(k) counts the number of ways to colour
every vertex of G with one of k different colours, with the requirement that no two
adjacent vertices have the same colour. If n is the number of vertices of G and m
is the number of edges of G, then χG(k) = kn −mkn−1 + · · · ; in other words, n is
the degree of χG(k), and −m is the coefficient of kn−1.

Part ii. If e is any edge of G, let G/e be the graph obtained by contracting e,
i.e., shrinking e to a point and making it a vertex, and let G \ e be the graph
obtained by deleting e. Then the deletion-contraction equation says that χG(k) =
χG\e(k)− χG/e(k).

To prove this, first note that any colouring of G is a colouring of G\e. A colouring
of G \ e gives a colouring of G if and only if the two vertices of e have different
colours. Meanwhile, a colouring of G \ e gives a colouring of G/e if and only if the
two vertices of e have the *same* colour. As in any colouring of G\e the two vertices
of e must are either the same or different, this gives χG\e(k) = χG/e(k) + χG(k),
which is equivalent to the desire result.

Part iii. The proof is nested induction on the number of vertices n of G and the
number of edges m of G. As a base case, consider the empty graph En, which has n
vertices and no edges. Since each vertex of En can be coloured any of the k colours
independently, we see χEn

(k) = kn is a polynomial as desired.
Now, assume that for any graph Γ with less than n vertices, or with exactly n

vertices and less than m edges, we know that χΓ(k) is a polynomial, and let G be
a graph with n vertices and m edges. We may assume G has at least one edge e,
or we have the empty graph, which we have covered. Applying deletion contract to
the edge e, we see

χG(k) = χG\e(k)− χG/e(k)

But G \ e has the same number of vertices but fewer edges than G, and so we
know χG(k) is a polynomial by the inductive hypothesis. Similarly, G/e has fewer
vertices than G and so χG(k) is a polynomial. Thus, χG(k) is the difference of two
polynomials, and hence a polynomial.

Part iv.

Bare-bones approach: Consider the vertices A,F and G. F and G are adjacent,
and so most be different colours; we thus have two cases – either A,F and G are
three different colours, of A is the same colour as either F or G.
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Colouring Case 1

k

k-2 k-3 k-2 k-3

k-1 k-2

Colouring Case 2

k

k-1 k-2 k-2 k-3

* k-1

In case 1 then, there are k(k − 1)(k − 2) ways to colour A,F and G. We see
there are (k − 2)(k − 3) ways to colour B and C, and also to colour D and E, and
so in total case 1 contains k(k − 1)(k − 2)3(k − 3)2 colourings.

For Case 2, assume that F and A are the same colour. Then there are k(k − 1)
ways to colour A,F and G. There are k − 1 ways to colour B and k − 2 ways
to colour C; then k − 2 ways to colour D and k − 3 ways to colour E. This gives
k(k−1)2(k−2)2(k−3) colourings when F and A are the same colour; by symmetry,
there are just as many colourings when A and G have the same colour. Thus, in
total we have

χG(k) = k(k − 1)(k − 2)3(k − 3)2 + 2k(k − 1)2(k − 2)2(k − 3)

= k(k − 1)(k − 2)2(k − 3)[(k − 2)(k − 3) + 2(k − 1)]

= k(k − 1)(k − 2)2(k − 3)[k2 − 3k + 4]

Using Deletion Contraction. Alternatively, we may first apply deletion contraction
to the edge e = FG.

If we delete it, a quick argument gives χG\e(k(k − 1)2(k − 2)4.

Colouring H \ FG

k

k-1 k-2 k-1 k-2

k-2 k-2

H/FG

A

B C D E

v

It is a little more difficult to calculate χG/e(k). Let v ∈ G/e be the vertex new
that came from contracting F −G. We see that adding the edge G/e ∪Av gives a
graph whose polynomial is easily found by first colouring A then colouring v – we
have χG/e∪Av = k(k− 1)(k− 2)2(k− 3)2. If we then contract this new edge, to get
the new graph Γ = (G/e ∪ Av)/Av has some multiple edges that can be deleted,
and it is easy to calculate χΓ(k) = k(k − 1)2(k − 2)2.
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Colouring H \ FG ∪Av

k

k-2 k-3 k-2 k-3

k-1

Colouring Γ

k

k-1 k-2 k-1 k-2

So,

χG(k) = χG\e(k)− χG/e(k)

= χG\e(k)− χG/e∪Av(k)− χΓ(k)

= k(k − 1)2(k − 2)4 − k(k − 1)(k − 2)2(k − 3)2 − k(k − 1)2(k − 2)2

= k(k − 1)(k − 2)2[(k − 1)(k − 2)2 − (k − 3)2 − (k − 1)]

= k(k − 1)(k − 2)2[(k − 1)(k2 − 4k + 3)− (k − 3)2]

= k(k − 1)(k − 2)2[(k − 3)(k − 1)2 − (k − 3)2]

= k(k − 1)(k − 2)2(k − 3)[k2 − 2k + 1− k + 3]

= k(k − 1)(k − 2)2(k − 3)(k2 − 3k + 4)

Part v. Since A has degree 4, we see that at least 4 colours are necessary. We
show 4 colours are possible as follows: colour AB,CF and DE red, colour AC,BF
and EG blue, colour AE,BC and DG yellow, and colour AD and FG green.


