Euler's Theorem: What's wrong with this picture?

Theorem: Every football has 12 pentagons

We will prove this theorem today as a corollary to Euler's Theorem.
Definition
Suppose that a connected graph G is drawn on the sphere S^{2} so that no edges cross. Then G cuts the sphere into a finite number of disks called the faces of G.

Intuition / origin of name:
Think about the cube (or more generally a polyhedron).
Vertices Corners
Edges Where two cube faces meet
Faces Faces of cube

Counting vertices, faces and edges

Graph	V	E	F
C_{n}	n	n	2
W_{n}	$n+1$	$2 n$	$n+1$
$K_{4}=$ Tetrahedra	4	6	4
Cube	8	12	6
Octahedron	6	12	8
Dodecahedron	20	30	12
Icosahedron	12	30	20
Make your own			

What patterns do you see?

Euler's Formula

Theorem (Euler's formula for graphs on the sphere)

Let G be a connected graph drawn on the sphere without edges crossing. Let V and E be the number of edges and vertices of G, and let F be the number of faces of the drawing. Then

$$
V-E+F=2
$$

Cultural remarks

- Imre Lakatos's Proof and Refutations important work in philosophy of math tracing this theorem
- Beginings of topology: $V-E+F$ is called the Euler characteristic

Proof idea:
Deleting an edge doesn't change Euler Characteristic. Induct.

How to use Euler's Theorem

One shortcoming:
Only one equation, but three variables: V, E, F
Handshaking can give us another relation:
On a football, every vertex has degree three.

$$
2 E=\sum_{v \in V(G)} d(w)=\sum_{v \in V(G)} 3=3 V
$$

Similar handshaking between faces and edges
Let the degree $d(f)$ of a face f be the number of edges around it.

- Then each edge meets two faces
- Each face f meets $d(f)$ edges

$$
\sum_{f \text { face }} d(f)=2 E
$$

Proof that a football has 12 pentagons

Definition

A football, we mean a graph G drawn on the plane where:

- Every vertex $v \in G$ has degree 3
- Every face f has degree 5 or 6

Suppose there are P pentagons and H hexagons, so $F=P+H$.
Basic recipe for applying Euler's theorem:
Combine the following ingredients and stir well:

- Euler's Theorem: $V-E+P+H=2$
- Vertex-edge Handshaking: $3 V=2 E$
- Face-edge Handshaking: $5 P+6 H=2 E$

Back to videogames

Recall that the standard overhead view of a planet in video game produces not the sphere but the torus.
Definition
A video game graph is a graph drawn on a surface so that

- Every vertex has degree 4
- Every face has degree 4

Theorem
A video-game graph can never be the sphere. In fact, a video-game graph will always be the torus or the Klein bottle.
So the video-game designers didn't "mess up".

Proof: collect the standard three ingredients

Ingredient 1: Euler's theorem
Suppose that G was a video game graph drawn on the sphere:

$$
V-E+F=2
$$

Ingredient 2: Vertex-edge handshaking
Since every vertex has degree 4, we have

$$
2 E=4 V
$$

Ingredient 3: Vertex-face handshaking
Since every face has degree 4, we have

$$
2 E=4 F
$$

Mix well to finish proof...

