Instant Insanity / The Four Cubes Problem

- Four cubes
- Each face coloured one of four colours: blue, green, red, yellow
- Arrange the cubes in a line so that each of the four long rows has one of each colour

Prove the following set of cubes has no solution:

Not clear how to use graph theory....
...make a graph that encodes which faces are opposite each other on each cube.

The four cubes encoded in a labelled graph

What would a solution look like in terms of the graph?
Consider front/back of cube first...

A solution gives a certain pair of subgraphs...

Looking at the edges encoding front/back of cubes

1. One edge with each label in $\{1,2,3,4\}$
2. Each vertex has degree two

Exactly the same with the edges encoding top/bottom of cubes. Key fact:
A solution to Instantity Insanity gives a pair of subgraphs satisfying $1+2$, and the subgraphs have with disjoint edges.

Can also go from a pair of subgraphs to a solution But slightly subtly, there might be several ways to do this: for each edge, need to choose which colour is in front and which is in back...

Basic graphs and concepts

- The empty graph E_{n} has n vertices and no edges
- The complete graph K_{n} has n vertices, and each vertex is connected to every other.
- The path graph P_{n} has n vertices $\{1, \ldots, n\}$ with an edge between i and $i+1$
- The cycle graph C_{n} has n vertices $\{1, \ldots, n\}$ with an edge between i and $i+1$ and between n and 1 .

Definition

Let G be a simple graph with vertex set V. Its complement G^{c} is another graph with vertex set V, where two vertices $v, w \in V$ are adjacent in G^{c} if and only if they are not adjacent in G.

Obligatory Petersen graph

What does it mean for a graph to be connected?

Connected means we can "get from any vertex to another"

Definition (Walk)

Let G be a simple graph. A walk in G is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{n}$ so that v_{i} is adjacent to v_{i+1}. We we say the walk goes from v_{1} to v_{n}.

Definition (Connected)
A graph G is connected if there is a walk between any two vertices v and w in G.

Definitions I won't use without explaining

- A trail is a walk that doesn't repeat any edges
- A path is a walk that doesn't repeat any vertices

Bipartite graphs

Definition (Bipartite graphs)
A graph G is bipartite if we can colour every vertex either blue or red so that every edge goes between a blue vertex and a red vertex.

Definition (Complete bipartite graphs)
The complete bipartite graph $K_{m, n}$ consists of $m+n$ vertices, m coloured red, n coloured blue, and an edge between any red vertex and and any blue vertex.

Examples

Another way to characterise bipartite graphs

Lemma

A graph G is bipartite if and only if it doesn't have any cycles of odd length (i.e., subgraphs of the form $C_{2 k+1}$).

Bipartite \Longrightarrow no odd cycles:
Subgraphs of bipartite graphs are bipartite
No odd cycles \Longrightarrow Bipartite:
Try to colour G by distance from v
Definition (Distance)
Let G be connected, and let v, w be two vertices. The distance from v to w is the least number of edges in any walk from v to w.

