
Spanning trees

Trees are the minimal connected graphs. Spanning trees are
minimal subgraphs that contain all the vertices and are connected.

Definition
Let G be a connected graph. A spanning tree of G is a subgraph
T ⊆ G such that T is a tree, and T contains every vertex of G .

Side point: Kirkchoff’s Matrix Tree Theorem

Spanning trees of Kn are the same thing as labelled trees on n
vertices.
As a generalization of Cayley’s formula, can compute the number
of spanning trees of any graph G as the determinant of a matrix.



Weighted graphs

Edges often have a “cost” associated to them – the time, money,
or distance of the corresponding route/connection.

Definition
Weighted graph A weighted graph is a graph G together with a
weight function w : E (G )→ R. Normally we assume w(e) ≥ 0 for
all edges e.

Weighted graphs are often encoded in tables:

A

3 B

6 7 C

7 9 5 D

6 8 9 4 E

8 7 9 8 9 F

9 8 6 7 5 7 G



Minimal spanning trees

Motivating problem:

Suppose that the vertices of a weighted graph G represented cities,
and the weight w(e) of an edge was the cost of building a road
between the cities. What’s the cheapest way to connect all the
cities?

Definition
Let T ⊆ G be a spanning tree of a weighted graph. The weight of
T is the total weight of all its edges:

w(T ) =
∑
e∈T

w(e)

Problem becomes: find the minimal weight spanning tree

Checking every spanning tree too slow: Kn has nn−2



Many solutions. Two: Kruskal and Prim

Loose concept: Greedy Algorithms

A greedy algorithm doesn’t plan ahead, but just does the best it
can at each stage.

Definition (Kruskal’s algorithm)

Start with T having no edges. Iteratively:

I Look at cheapest remaining edge e

I If adding e to T creates a loop, discard e

I Otherwise, add e to T

Fairly clear: produces a spanning tree

But it’s not clear this spanning tree is minimal.



Another approach: Prim

Kruskal: a global view, “avoid cycles”

I Kruskal’s algorithm looks at all edges at start

I T may be disconnected at intermediate steps

Prim: local view, “build tree”
Start at one vertex and explore out

Definition (Prim’s algorithm)

Start T = v , a single vertex. Iteratively:

I Find the cheapest edge e = vw from v ∈ T to w /∈ T

I Add e and w to T

Fairly clear: produces a spanning tree

But it’s not clear this spanning tree is minimal.



Why do Kruskal and Prim work?

Exchange principle:

Let T be a spanning tree of G , and e = xy an edge not in T .
Then:

I Unique path P from x to y using only edges of T

I If f any edge in P, then T ′ = T \ f ∪ e a spanning tree

i.e., can exchange edges in P for e.

Basic idea of proofs:

I Let T be spanning tree produced by algorithm

I Let Tm be a minimal spanning tree

I Transform Tm to T edge by edge using exchange principle

I Show each step is a minimal spanning tree

Key: always add cheapest edge in T but not Tm.



Finding all minimal spanning trees

All edges have distinct weights:

I Never have to make an arbitrary choice

I Unique minimal weight spanning tree

All edges have the same weight:

I Any spanning tree is minimal

I Probably too many to write down

A few edges have repeated weights:

I Only a few places we have to make a choice

I Can find them with case by case analysis breaking ties


