## Colouring Graphs



Started with 4 colour theorem: Any map can be coloured with four colours so that adjacent countries have different colours.

- Posed by Guthrie 1852
- Proved by Appel and Haken 1976

Definition
The chromatic number $\chi(G)$ of a graph $G$ is the least number of colours needed to colour the vertices so that adjacent vertices have different colours.

Theorem (The four colour theorem)
A planar graph $G$ has $\chi(G) \leq 4$.

## First examples of chromatic number

The empty graph $E_{n}$
The only graphs with $\chi(G)=1$ are the empty graphs $E_{n}$.
The complete graph $K_{n}$
The complete graph has $\chi\left(K_{n}\right)=n$
Bipartite graphs
A graph $G$ has $\chi(G)=2$ if and only if $G$ is bipartite.
The wheel graph $W_{n}$

$$
\chi\left(W_{n}\right)= \begin{cases}3 & n \text { even } \\ 4 & n \text { odd }\end{cases}
$$

Why?

## How to find $\chi(G)$ : sandwich it!

Start by finding rough upper and lower bounds.
Upper bound: colour it
If you can colour the vertices of $G$ with $k$ colours so that adjacent vertices don't share a vertex, then $\chi(G) \leq k$.

Lower bound: often case by case
A few trivial tricks:

- If a vertex is adjacent to everything, as in $W_{n}$
- If $H$ is a subgraph of $G$, then $\chi(G) \geq \chi(H)$.

If lower bound isn't equal to upper bound, refine.
Finding the $\chi(G)$ is NP-hard
So no beautiful answer. But for small graphs not that bad.

## Example: find $\chi(G)$ for the graphs shown below



## General upper bounds

## Definition

$\Delta(G)$ is the maximum degree of any vertex of $G$.
Lemma

$$
\chi(G) \leq \Delta(G)+1
$$

Proof.
Colour the vertices one by one in any order.
The bound is tight, but for very few graphs:

- $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$
- For $n$ odd, $\chi\left(C_{n}\right)=3=\Delta\left(C_{n}\right)+1$

Theorem (Brooks, not on exam)
If $G$ isn't a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

## A story problem for $\chi(G)$

Suppose you have some things you want to separate into groups, but certain things can't be in the same group. How many groups do you need?

- Group vacation, several cottages, some people don't get on
- Storing chemicals, some react dangerously with each other Make a graph $G$ with:
- Vertices are the things
- Edges mean the vertices can't be in the same group

The groups are the colours.
$\chi(G)$ is the lowest feasible number of groups

