Chromatic Number

Theorem
For G a planar graph $\chi(G) \leq 6$.

Step 1: Using Euler's Theorem

Definition
$\delta(G)$ denotes the minimum degree of all vertices in G.
Lemma
For G a simple planar graph $\delta(G) \leq 5$.
Step 2: Induction
We proved $\chi(G) \leq \Delta(G)+1$ by colouring the vertices of G in any order. The Lemma bounds $\delta(G)$ and not $\Delta(G)$; need to be a little smarter.

Proof that simple planar graphs have $\delta(G) \leq 5$

Assume not, then every vertex has $d(v) \geq 6$.
The three ingredients:

- Euler's Theorem $V-E+F=2$
- Face-Edge handshaking Simple, so $d(f) \geq 3$ for all faces. So $2 E \geq 3 F$
- Vertex-Edge handshaking By assumption, $d(v) \geq 6$, so $2 E \geq 6 \mathrm{~V}$

Proof of the Six Colour Theorem

Assume G is planar. We can assume that G is simple. Why?
Induct on n the number of vertices

Base case: $n \leq 6$
At most six vertices, so can give each vertex a different colour.

Inductive Step

Assume that G has n vertices, and every planar simple graph with less than n vertices can be coloured with six colours.

- By the Lemma, G has a vertex v with $d(v) \leq 5$
- The graph $G \backslash v$ has $n-1$ vertices, so can be six coloured
- Now colour v

Chromatic index

Suppose six teams $A-F$ are in a soccer league, and each team will play three games:

If each team plays one game a week, can the tournament be run in three weeks? How about if we want $A B$ and $D E$ to play on different weeks?

Make it a graph

Chromatic index $\chi^{\prime}(G)$

Definition

The chromatic index $\chi^{\prime}(G)$ denotes the minimum number of colours needed to colour the edges of G so that any two edges that share a vertex have different colours.

What are the colours in the application?

Examples:

- $\chi^{\prime}\left(K_{4}\right)=3$
- $\chi^{\prime}\left(K_{5}\right)=5$
$\Delta(G)$ is used to denote the maximum degree of a vertex.
Lemma
$\chi^{\prime}(G) \geq \Delta(G)$

How to find $\chi^{\prime}(G)$

Theorem (Vizing)
For a simple graph $\chi^{\prime}(G)=\Delta$ or $\Delta+1$
We won't prove Vizing's Theorem, but will only implicitly use it.
One method to find $\chi^{\prime}(G)$ with proof:
We know $\chi^{\prime}(G) \geq \Delta(G)$. Try to colour it with $\Delta(G)$.

- If we can, we have shown $\chi^{\prime}(G)=\Delta$
- If we can't, prove it: so we know $\chi^{\prime}(G) \geq \Delta+1$
- Find a colouring with $\Delta+1$ colours

What we mean by ' implicitly'
Vizing's Theorem tells us this last step is possible, but we'd still want to do it even if we know Vizing's Theorem.

Another way to prove to get a lower bound on χ^{\prime}

Count how many edges could have the same colour.
Example ($\chi^{\prime}\left(K_{n}\right)$ for n odd)
Suppose $n=2 k+1$ is odd.

- Then $\Delta\left(K_{n}\right)=n-1=2 k$
- Note K_{n} has $k(2 k+1)$ edges. Why?
- We can have at most k edges of any given colour
- So using $2 k$ colours, can only colour $2 k^{2}<k(2 k+1)$ edges

