Chromatic Number

Theorem For G a planar graph $\chi(G) \le 6$. Step 1: Using Euler's Theorem

Definition $\delta(G)$ denotes the *minimum* degree of all vertices in *G*.

Lemma

For G a simple planar graph $\delta(G) \leq 5$.

Step 2: Induction

We proved $\chi(G) \leq \Delta(G) + 1$ by colouring the vertices of G in any order. The Lemma bounds $\delta(G)$ and not $\Delta(G)$; need to be a little smarter.

Proof that simple planar graphs have $\delta(G) \leq 5$

Assume not, then every vertex has $d(v) \ge 6$.

The three ingredients:

- Euler's Theorem V E + F = 2
- ► Face-Edge handshaking Simple, so d(f) ≥ 3 for all faces. So 2E ≥ 3F
- ► Vertex-Edge handshaking By assumption, d(v) ≥ 6, so 2E ≥ 6V

Proof of the Six Colour Theorem

Assume G is planar. We can assume that G is simple. Why? Induct on n the number of vertices

Base case: $n \le 6$

At most six vertices, so can give each vertex a different colour.

Inductive Step

Assume that G has n vertices, and every planar simple graph with less than n vertices can be coloured with six colours.

- By the Lemma, G has a vertex v with $d(v) \leq 5$
- The graph $G \setminus v$ has n-1 vertices, so can be six coloured
- Now colour v

Chromatic index

Suppose six teams A - F are in a soccer league, and each team will play three games:

If each team plays one game a week, can the tournament be run in three weeks? How about if we want *AB* and *DE* to play on different weeks?

Make it a graph

Chromatic index $\chi'(G)$

Definition

The chromatic index $\chi'(G)$ denotes the minimum number of colours needed to colour the edges of G so that any two edges that share a vertex have different colours.

What are the colours in the application?

Examples:

•
$$\chi'(K_5) = 5$$

 $\Delta(G)$ is used to denote the maximum degree of a vertex.

Lemma $\chi'(G) \ge \Delta(G)$

How to find $\chi'(G)$

Theorem (Vizing)

For a simple graph $\chi'(\mathsf{G}) = \Delta$ or $\Delta + 1$

We won't prove Vizing's Theorem, but will only implicitly use it.

One method to find $\chi'(G)$ with proof:

We know $\chi'(G) \ge \Delta(G)$. Try to colour it with $\Delta(G)$.

- If we can, we have shown $\chi'(G) = \Delta$
- If we can't, prove it: so we know $\chi'(G) \ge \Delta + 1$
- Find a colouring with $\Delta + 1$ colours

What we mean by ' implicitly'

Vizing's Theorem tells us this last step is possible, but we'd still want to do it even if we know Vizing's Theorem.

Another way to prove to get a lower bound on χ'

Count how many edges could have the same colour.

Example $(\chi'(K_n) \text{ for } n \text{ odd})$

Suppose n = 2k + 1 is odd.

- Then $\Delta(K_n) = n 1 = 2k$
- Note K_n has k(2k + 1) edges. Why?
- We can have at most k edges of any given colour
- ▶ So using 2k colours, can only colour $2k^2 < k(2k+1)$ edges