Chromatic Polynomial

Rather than just knowing whether we can colour a graph G with k colours, we can count the different colourings that are possible.

Definition

Let G be a simple (why?) graph, and let $k \geq 1$ be an integer. The chromatic polynomial $P_{G}(k)$ is the number of different ways to colour the vertices of G with k colours, so that adjacent vertices have different colours.

Remarks:

- It is not obvious from the definition that $P_{G}(k)$ is a polynomial. Prove next lecture.
- $P_{G}(k)=0 \Longleftrightarrow 0 \leq k<\chi(G)$

In easy examples, can colour vertex by vertex:
Colour vertex v_{1}, then vertices adjacent to v_{1}, then..

- $P_{E_{n}}(k)=k^{n}$
- $P_{K_{n}}(k)=k(k-1)(k-2) \cdots(k-n+1)$
- If T is a tree with n vertices, then $P_{T}(k)=k(k-1)^{n}$

G

H

「

What patterns do you notice?

A harder example: C_{4}

- k ways to colour vertex 1
- $k-1$ ways to colour vertex 2
- $k-1$ ways to colour vertex 3
- Don't know if v_{1} and v_{3} have same colour

Case 1: v_{1} and v_{3} have the same colour

- k choices for this colour
- Then $k-1$ choices for each of v_{2} and v_{4}

Case 2: v_{1} and v_{3} have the same colour

- k choices for v_{1}, then $k-1$ choices for v_{3}
- $k-2$ choices for each of v_{2} and v_{4}

Combining the cases, we see:

$$
P_{C_{4}}=k(k-1)^{2}+k(k-1)(k-2)^{2}=k(k-1)\left(k^{2}-3 k+3\right)
$$

The two cases are themselves chromatic polynomials!

The type of reasoning we used to find the chromatic polynomial of C_{4} will work to find the chromatic polynomial of any graph; however, many cases might need to be considered, and the argument will get quite complicated.

It will help to repackage the reasoning

Case 1: v_{1} and v_{3} are the same colour
If they're the same colour, then we can make them same vertex...
Case 2: v_{1} and v_{3} are different colours
If there's an edge between two vertices, then they need to be different colours.

Generalizing the observation we just made

A lemma, with some definitions baked in
Suppose that G is a graph, and x and y are two vertices that aren't adjacent. Define:

- $G_{+x y}$ to be the graph with the edge $x y$ added
- $G_{x=y}$ to be the graph with x and y identified

Then:

$$
P_{G}(k)=P_{G_{+x y}}(k)+P_{G_{x=y}}(k)
$$

Proof.

Consider the colourings of G. In some of them x and y will be colours, and in others x and y will be the same colour. The colourings in the first case are exactly the colourings of $G_{+x y}$, the colourings in the second are the colourings of $G_{x=y}$.

The chromatic polynomial of C_{5}

Three cases, but two are the same:

- Case 1: 1,3 and 4 all have different colours
- Case 2: 1 and 3 have the same colour
- Case 3: 1 and 4 have the same colour

By symmetry, Cases 2 and 3 are the same.

- Case 1 gives: $k(k-1)(k-2)^{3}$
- Cases 2 and 3 each give: $k(k-1)^{2}(k-2)$

$$
\begin{aligned}
P_{C_{5}}(k) & =k(k-1)(k-2)^{3}+2 k(k-1)^{2}(k-2) \\
& =k(k-1)(k-2)\left[k^{2}-4 k+4+2 k-2\right] \\
& =k(k-1)(k-2)\left(k^{2}-2 k+2\right)
\end{aligned}
$$

Deletion-Contraction: restructuring the lemma

The lemma as stated can be a bit awkward for induction:

- $G_{+x y}$ has an extra edge; " bigger"
- $G_{x=y}$ has fewer vertices: "smaller"

Rewrite so $H \cong G_{+x y}$ is the "starting" graph.
Lemma (Deletion-Contraction)
Let H be a graph, and let e be an edge in H. Then

$$
P_{H}(k)=P_{H \backslash e}(k)-P_{H / e}(k)
$$

The edge e is between $x y$

$$
H=G+x y, \quad H \backslash e=G, \quad H / e=G_{x=y}
$$

Example
Re-do finding $P_{C_{4}}(k)$ and $P_{C_{5}}(k)$ using deletion-contraction.

