Where were we? Colouring graphs

- Chromatic number $\chi(G)$: colour vertices with fewest colours
- Chromatic index $\chi'(G)$: colour edges with fewest colours
- Chromatic polynomial P_G(k): number of ways to colour vertices with k colours

Some graphs: colour vertex by vertex

$$P_G(k) = k(k-1)^4(k-2)^2$$

In general: need case-by-case Examples we looked at: C_4, C_5 .

Today: prove $P_G(k)$ is a polynomial Message: Deletion-Contraction well suited for induction.

Chromatic polynomial is a polynomial

Theorem

Let G be a simple graph. Then $P_G(k)$ is a polynomial in k. Moreover, if G has n vertices and m edges, then

$$P_G(k) = k^n - mk^{n-1} + lower order terms$$

Proof idea:

Induct on the number of edges using deletion-contraction.

Base case: m = 0

If G has no edges and n vertices, then $G = E_n$ empty graph. $P_{E_n} = k^n$ is a polynomial of the right form.

Inductive step

Assume that G has m > 0 edges and n vertices, and that for any graph H with $\ell < m$ edges and p vertices, we have $P_H(k) = k^p - \ell k^{p-1} + \cdots$.

Let $e \in G$ be any edge:

- $G \setminus e$ has *n* vertices and m-1 edges
- G/e has n-1 vertices and at most m-1 edges

So by the inductive hypothesis, theorem holds for $G \setminus e$ and G/e

So applying Deletion-Contraction:

$$P_G(k) = P_{G \setminus e}(k) - P_{G/e}(k)$$

= $(k^n - (m-1)k^{n-1} + \cdots) - (k^{n-1} - \cdots)$
= $k^n - mk^{n-1} + \cdots$

Which is what we needed to show.

Odds and Ends

Deletion-Contraction as an algorithm

- Can always find $P_G(x)$ by iterating deletion-contraction
- In practise, often faster to add edges

Information in $P_G(k)$

- n = Number of vertices = degree $P_G(k)$
- m = Number of edges, $P_G(k) = x^n mx^{n-1} + \cdots$
- $\chi(G)$ is the lowest k with $P_G(k) \neq 0$.

June Huh got the Field's Medal in 2022 for work on $P_G(k)$

- Roughly, proved coefficients of $P_G(k)$ are monotonic
- Used ideas from Algebraic Geometry

TellUsFeedback – I read and think about this!

MAS341 Graph Theory (SPRING 2023~24)

Students FO

Calculating the chromatic polynomial of C_n

Let e be any edge of C_n . Then:

•
$$C_n/e \cong C_{n-1}$$

•
$$C_n \setminus e = P_n$$
, a tree, so $P_{P_n}(k) = k(k-1)^{n-1}$

So we should be able to find $P_{C_n}(k)$ using induction, but need to "guess" the formula first.

$$P_{4}(k) = k^{4} - 4k^{3} + 6k^{2} - 3k$$

$$P_{5}(k) = k^{5} - 5k^{4} + 10k^{3} - 10k^{2} + 4k$$

$$P_{6}(k) = k^{6} - 6k^{5} + 15k^{4} - 20k^{3} + 15k^{3} - 5k$$

$$P_{7}(k) = k^{7} - 7k^{6} + 21k^{5} - 35k^{4} + 35k^{3} - 21k^{2} + 6k$$

Calculating the chromatic polynomial of C_n

Let e be any edge of C_n . Then:

•
$$C_n/e \cong C_{n-1}$$

•
$$C_n \setminus e = P_n$$
, a tree, so $P_{P_n}(k) = k(k-1)^{n-1}$

So we should be able to find $P_{C_n}(k)$ using induction, but need to "guess" the formula first.

$$P_{4}(k) = k^{4} - 4k^{3} + 6k^{2} - 3k$$

$$P_{5}(k) = k^{5} - 5k^{4} + 10k^{3} - 10k^{2} + 4k$$

$$P_{6}(k) = k^{6} - 6k^{5} + 15k^{4} - 20k^{3} + 15k^{3} - 5k$$

$$P_{7}(k) = k^{7} - 7k^{6} + 21k^{5} - 35k^{4} + 35k^{3} - 21k^{2} + 6k$$

Looks like:

$$P_n(k) = (k-1)^n + (-1)^n(k-1)$$

Inductive proof that $P_{C_n}(k) = (k - 1)^n + (-1)^n (k - 1)$

Base case:
$$n = 3$$

Plug in $n = 3$, get $k(k - 1)(k - 2) = P_{C_3}(k)$.

Inductive step:

Get to assume: $P_{C_{n-1}}(k) = (k-1)^{n-1} + (-1)^{n-1}(k-1)$

Plugging into deletion-contraction:

$$P_{C_n}(k) = P_{C_n \setminus e}(k) - P_{C_n/e}(k)$$

= $k(k-1)^{n-1} - [(k-1)^{n-1} + (-1)^{n-1}(k-1)]$
= $k(k-1)^{n-1} - (k-1)^{n-1} - (-1)^{n-1}(k-1)$
= $(k-1)^{n-1} [k-1] + (-1)^n (k-1)$
= $(k-1)^n + (-1)^n (k-1)$