# Gluing formulas: intro

Lemma If G is the disjoint union of  $G_1$  and  $G_2$ , then

$$P_G(k) = P_{G_1}(k)P_{G_2}(k)$$

### Proof.

Colouring G is exactly the same as colouring  $G_1$  and  $G_2$  independently.

Gluing formulas: when G isn't quite a disjoint union Idea: Colour  $G_1$ , then extend to a colouring of  $G_2$ .

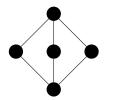
# Gluing formulas: statements

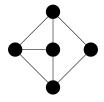
Lemma

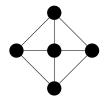
If G is made by gluing  $G_1$  and  $G_2$  along a vertex v, then:

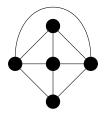
$$P_G(k) = \frac{1}{k} P_{G_1}(k) P_{G_2}(k)$$

## Proof.


First colour  $G_1$  in any of the  $P_{G_1}(k)$  ways. Now, vertex v of  $G_2$  is already coloured, but none of the rest. Since the colours are interchangable, exactly 1/k of the ways of colouring  $G_2$  will have the right colour at v.


#### Lemma


If G is made by gluing  $G_1$  and  $G_2$  along an edge e, then


$$P_G(k) = rac{1}{k(k-1)} P_{G_1}(k) P_{G_2}(k)$$

# Find $P_G(k)$ for the following graphs







