This week we're finishing the first unit

Last Wednesday:

> Trees

» Started Chemistry at very end

Today:

» Chemistry

» Eulerian 4 semi-Eulerian graphs

Wednesday

» Hamiltonian graphs



Chemical formulas encode degree sequences
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Shortcuts around Carbon and Hydrogen

Figure: Two pictures of Caffeine

» Unlabelled vertices are Carbon

» Hydrogen not drawn; inferred to make degrees correct



Isomers are graphs with the same degree sequence

Definition
An Alkane is a molecule with formula C,H2,42
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Definition (Isomer)
Two different molecules are isomers if they have the same chemical
formula.

Lemma: Any alkane is a tree.
Proof: Handshaking.

Question: How many isomers does CsHy> have?



Bridges of Konigsberg: birth of graph theory
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Figure: The city of Konigsberg

A puzzle:
Cross every bridge exactly once and return to where you started.



The puzzle has no solution

Suppose there was a walk:

» Stand on far bank
Watch friend do walk
Comes by one bridge

v

v

v

Leaves by another bridge

When they cross third bridge
they're stuck with you

v




Generalizing with graph theory

Definition
» A walk is closed if it starts and ends at the same point.

» A graph is Eulerian if it has a closed walk that uses every edge
exactly once

Lemma:
If G is Eulerian, then every vertex has even degree.

Proof.
Every time the walk visits v, pair the edge it arrives by with the
edge it leaves by. O



The first theorem in graph theory

Theorem (Euler)
A connected graph G is Eulerian if and only if every vertex of G

has even degree.

Proof.

We proved Eulerian = even degree in last lemma.
For other direction:

> Walking randomly will eventually get back to where we
started (why?)

» Remove edges we used to get a smaller graph
» By induction, each connected piece is Eulerian

» Glue the cycles back together



What can you draw without lifting your pen or retracing?

A house? A house with a chimney?



Formalizing our observations

Definition
A graph G is semi-Eulerian if it has a (not necessarily closed) walk
that uses every edge exactly once.

Theorem

A connected graph G is semi-Eulerian if and only if it has at most
two vertices of odd degree

One proof: tweak the original proof

Easy direction: every point but start and end needs even degree.
Hard direction:

» Start walk at one odd degree point
» Walking randomly can only end at other odd degree point
> Delete this path, then use induction + gluing as before



A devious trick to avoid doing work

Mathematicians are lazy

> It's unsatisfying to “redo” the work of the proof

» Slicker to reduce it to a problem we've already solved

The tricky/easy proof:

> Let u,v € G be the two vertices of odd degree

» Add an edge e from u to v to get G’
(this may make G non-simple, that's okay)

» In G’, every vertex has even degree, so it has Eulerian cycle

» Delete e from the eulerian cycle to get an Eulerian walk from
utov



A preview of next lecture

Definition

A graph G is Hamiltonian if there is a closed walk that visits every
vertex exactly once. G is semi-Hamiltonian if there is a not
necessarily closed walk that visits every vertex exactly once.

» It was Easy to tell if a graph was Eulerian (Edges)
» It's Hard to tell if a general graph is Hamiltonian (Vertices)

Question to lead into it:

> Is Dy Hamiltonian?
> Is the Petersen graph?
» |f we remove a vertex from

Dy is it Hamiltonian? How

about Petersen?
Dodecahedron graph Dog



