The method we used to show G isn't planar generalises:

We did $G=K_{3,3}, K_{5}$ and the Petersen graph last lecture.
Take any cycle C in a graph G

- If G is planar, C will be drawn as a "circle"
- Any vertex or edge not in C must lie inside or outside circle
- Handle possibilities case by case

Stereographic projection:
Don't have to treat inside/outside the circle as separate cases.
But for a complicated graph, could still be a lot of cases... Best case: graph is Hamiltonian.

- Don't have to put vertices inside/outside circle, only edge
- Turns out there's an easy way to handle the cases ...

The crossing graph packages the case by case analysis

"Edge e_{1} is in, so edge e_{2} out, so edge e_{3} in, so ..." gets tiresome.
For this slide: G a graph with Hamiltonian cycle C

- Some pairs of edges in $G \backslash C$ cross if drawn inside C
- Some pairs of edges can be drawn on the same side

Definition

The crossing graph Cross (G, C) has:
Vertices: the edges in $G \backslash C$
Edges e and f are adjacent if they cross inside C

Theorem (Planarity Algorithm for Hamiltonian graphs)
G is planar if and only if $\operatorname{Cross}(G, C)$ is bipartite

Example of planarity algorithm:

Figure: A graph 「, then redrawn with Hamiltonian cycle outside

What is Cross(Γ, AFIHCBEDGA)?
Vertices $=$ edges in middle
Edges $=$ crossings in middle

What if G isn't Hamiltonian? Two lemma suffice.

Lemma

If G is a subgraph of H, and G is nonplanar, then H is nonplanar.
Proof.
To draw H, we're drawing G and then adding some things.

Another tool for showing G isn't planar

Definition

A graph H is a subdivision of G if it can be created from G by adding some vertices of degree two in the middle of edges.

Lemma
If H is a subdivision of G and G isn't planar, then H isn't planar.
Proof.
To draw H, we draw G then add some dots on the edges.

Kuratowski's theorem - proves a general G not planar

Theorem
A graph G is not planar if and only if it has a subgraph that is a subdivision of $K_{3,3}$ or K_{5}

Proof of the "if" direction:

- $K_{3,3}$ and K_{5} aren't planar
- So subdivisions of $K_{3,3}$ or K_{5} aren't planar
- So graphs having subgraphs that are subdivisions of $K_{3,3}$ or K_{5} aren't planar

Remarks on the "only if" direction

- Harder to prove and we won't even sketch it
- Won't explicitly use: if G is planar, prove it by drawing it!
- Will use implicitly: if G nonplanar, there's always a $K_{3,3}$ or K_{5}

Example of using Kuratowski's theorem

Give another proof that Γ isn't planar

