
Second unit: Algorithms

Some topics in Decision Maths; mostly “easy” points on exam.

Largely about optimization problems:

I Kruskal and Prim’s algorithms for cheapest spanning trees

I Dijkstra’s algorithm: shortest path between two points

I Travelling Salesperson problem

In the real world: computers run these algorithm

From pure math perspective, interesting bits are:

I Proving the algorithm works as advertized

I Analyzing speed of algorithm – can you go faster?

First topic: Prüfer code

How many trees on n vertices are there?



Two interpretations of counting trees

Count isomorphism classes of trees. “unlabelled trees”

I This is what we do when we count isomers

I No nice answer

Count labelled trees on n vertices

I Vertices are no longer interchangeable

I n! ways to label an unlabeled tree

I Symmetries mean some produce the same labelled tree

n 1 2 3 4 5 6 7

Unlabelled trees 1 1 1 2 3 6 11

Labelled trees 1 1 3 16 125 1296 16807



“Cayley’s” formula

Theorem (Borchardt 1860, Cayley 1889)

There are nn−2 labelled trees on n vertices.

Original proof used determinants.

Prüfer code: another way to prove Cayley’s formula

Bijection between Trees and Codes

I Tn = {labelled trees on n vertices}
I Cn = {(a1, a2, . . . , an−2) : ai ∈ {1, 2, . . . , n}}
I Build a bijection between Tn and Cn

I |Cn| = nn−2

Bijective Proofs

In combinatorics, bijective proofs often give more...



How to write down a labelled trees?

Record the edges:

1 2 3

4 5 6

7 8 9

Each column is an edge
1 5 2 6 5 7 8 8

5 2 6 3 4 5 9 5

I Records 2n − 2 numbers between 1 and n

I Many ways of recording same tree

Need to record the edges in a canonical way

“Canonical” means: without arbitrary choices



Prüfer code: iteratively remove lowest leaf

1. Find lowest leaf ` of T

2. Record edge e connecting it to rest of tree

3. Delete ` and e to get a simpler tree T ′

4. Repeat process with T ′

1 2 3

4 5 6

7 8 9

Parent 5 6 5 2 5 5 8 9

Leaf 1 3 4 6 2 7 5 8

The underlined numbers form the Prüfer code
Non-underlined numbers are a permutation of 1-9. Why?



To see Prüfer code is a bijection, construct inverse

Given a Prüfer code, how to fill in empty boxes?
Parent 5 6 5 2 5 5 8

Leaf

Numbers in the Prüfer code were parents

I So the numbers in Prüfer code can’t be leaves

I We deleted lowest leaf first

I Thus, first leaf is lowest number not in the Prüfer code

To reconstruct tree from code:

I Find lowest number not used yet that’s not in remaining code

I Delete the first column

I Iterate; last two numbers left are the last edge



Cayley’s enrichment: keep track of degrees of vertices

Parent 5 6 5 2 5 5 8 9

Leaf 1 3 4 6 2 7 5 8

Degree of vertex i = number of times i appears in table

= number of times i appears in Prüfer code + 1

Corollary

The number of labeled trees on n vertices where for each i , vertex
i has degree di is:

(n − 2)!∏
(di − 1)!


