Second unit: Algorithms

Some topics in Decision Maths; mostly "easy" points on exam.
Largely about optimization problems:

- Kruskal and Prim's algorithms for cheapest spanning trees
- Dijkstra's algorithm: shortest path between two points
- Travelling Salesperson problem

In the real world: computers run these algorithm
From pure math perspective, interesting bits are:

- Proving the algorithm works as advertized
- Analyzing speed of algorithm - can you go faster?

First topic: Prüfer code
How many trees on n vertices are there?

Two interpretations of counting trees

Count isomorphism classes of trees. "unlabelled trees"

- This is what we do when we count isomers
- No nice answer

Count labelled trees on n vertices

- Vertices are no longer interchangeable
- n ! ways to label an unlabeled tree
- Symmetries mean some produce the same labelled tree

n	1	2	3	4	5	6	7
Unlabelled trees	1	1	1	2	3	6	11
Labelled trees	1	1	3	16	125	1296	16807

"Cayley's" formula

Theorem (Borchardt 1860, Cayley 1889)
There are n^{n-2} labelled trees on n vertices.
Original proof used determinants.
Prüfer code: another way to prove Cayley's formula
Bijection between Trees and Codes

- $T_{n}=\{$ labelled trees on n vertices $\}$
- $C_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n-2}\right): a_{i} \in\{1,2, \ldots, n\}\right\}$
- Build a bijection between T_{n} and C_{n}
- $\left|C_{n}\right|=n^{n-2}$

Bijective Proofs
In combinatorics, bijective proofs often give more...

How to write down a labelled trees?

Record the edges:

Each column is an edge

1	5	2	6	5	7	8	8
5	2	6	3	4	5	9	5

- Records $2 n-2$ numbers between 1 and n
- Many ways of recording same tree

Need to record the edges in a canonical way
"Canonical" means: without arbitrary choices

Prüfer code: iteratively remove lowest leaf

1. Find lowest leaf ℓ of T
2. Record edge e connecting it to rest of tree
3. Delete ℓ and e to get a simpler tree T^{\prime}
4. Repeat process with T^{\prime}

Parent	$\underline{5}$	$\underline{6}$	$\underline{5}$	$\underline{2}$	$\underline{5}$	$\underline{5}$	$\underline{8}$	9
Leaf	1	3	4	6	2	7	5	8

The underlined numbers form the Prüfer code Non-underlined numbers are a permutation of 1-9. Why?

To see Prüfer code is a bijection, construct inverse

Given a Prüfer code, how to fill in empty boxes?

| Parent | 5 | 6 | 5 | 2 | 5 | 5 | 8 | |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Leaf | | | | | | | | |

Numbers in the Prüfer code were parents

- So the numbers in Prüfer code can't be leaves
- We deleted lowest leaf first
- Thus, first leaf is lowest number not in the Prüfer code

To reconstruct tree from code:

- Find lowest number not used yet that's not in remaining code
- Delete the first column
- Iterate; last two numbers left are the last edge

Cayley's enrichment: keep track of degrees of vertices

Parent	$\underline{5}$	$\underline{6}$	$\underline{5}$	$\underline{2}$	$\underline{5}$	$\underline{5}$	$\underline{8}$	9
Leaf	1	3	4	6	2	7	5	8

Degree of vertex $i=$ number of times i appears in table $=$ number of times i appears in Prüfer code +1

Corollary
The number of labeled trees on n vertices where for each i, vertex i has degree d_{i} is:

$$
\frac{(n-2)!}{\prod\left(d_{i}-1\right)!}
$$

