
Today: Shortest and Longest paths
But first a basic definition.

Definition
A directed graph is one where each edge has a chosen starting and
ending point, usually indicated with arrows.

A

B C

4

7

8

2

3

Walks in directed graphs:

You can only travel the edge in the direction the arrow shows.



Dijkstra’s algorithm for shortest path

Input:

A weighted (possibly directed) graph G and starting vertex v ∈ G

Output:

For every vertex w ∈ G a list of all shortest paths from v to w

Initialize:
From starting vertex v list every edge out of v as a poential
shortest path to corresponding vertex w

Iterate:

I Choose w with cheapest potential shortest path and make
these paths permanent

I Update list of potential paths by adding edges out of w to the
shortest paths to w and checking if they’re cheaper than
known paths



Example graph from the 2008 Exam

Find all shortest paths from S to T .

S

A

B

C

D

E

F

T

11

7

10

3

10

6

10

54

9

7

11

3

Add on:

I Which edges if made a little longer would make the distance
from S to T longer?

I Which edges if made a little shorter would make the distance
from S to T shorter?



The main idea of why Dijkstra’s works:

Suppose we’re at the step were Dijkstra’s decides the cheapest
path to w .

Then:
A cheaper path to w would have to go through a vertex u we
haven’t found the cheapest path to yet.

But!
Even getting to u costs more than our cheapest path to w .

An observation:
Dijkstra’s algorithm depends on the edge weights being
non-negative!



Culture: performance of Dijkstra’s algorithm

In a limited sense, Dijkstra’s algorithm is optimal:

If all we know is that we have a weighted graph, then you can’t do
better than Dijkstra’s algorithm.

In practise, often not very good:

When finding path from Sheffield to Edinburgh, Dijkstra’s
algorithm explores every street in London.

Real world maps have extra information:

It’s easy to calculate the distance between two points as the crow
flies, and we know the driving distance has to be at least that large.

The A* algorithm avoids searching London:

Supposes we have an easy to calculate “heuristic distance”
h(v ,w), that is a lower bound for the actual distance d(v ,w).



Finding the longest path

Scheduling a large problem with many parts

For example, building a house.

I Some can be done at same time: (finishing interior rooms)

I Some need to be done in order: (foundation before walls)

I How early could whole project be finished?

Solution: longest path

I Encode tasks as edges in directed weighted graph

I Edge e follows edge f if task f requires task e

I Length of longest path is the shortest time to complete project

Building the directed graph from a list of tasks and dependencies
can require a few tricks and won’t be tested.



Longest path might not exist:

A necessary assumption:

If the graph has a directed cycle, we could get an infinitely long
path by repeating graph over and over again.

Definition
A directed graph G is acyclic if it has no directed cycles.

Graphs in scheduling applications are acyclic:

Otherwise we’d have a cycle of tasks that all depend on each other
and we could never start the project!

Ordering vertices / “topological sort”

If G is acyclic it’s easy to order the vertices of G so that if there’s
an edge from v to w , then w comes after v .



The longest path algorithm:

Initializing:

I Topologically sort the vertices of G

I List every edge of starting vertex as potential longest path

Iterate:

I Make the potential longest path to the first vertex w on the
list permament

I Update the list of potential longest paths adding edges out of
w to longest paths to w and seeing if they create new longest
paths



Example graph from the 2008 Exam

Find all longest paths from S to T .

S

A

B

C

D

E

F

T

11

7

10

3

10

6

10

54

9

7

11

3

Add on:

I Which edges if made a little longer would make the longest
path from S to T longer?

I Which edges if made a little shorter would make the longest
path from S to T shorter?


