
The Travelling Salesperson Problem

Informally:

A Travelling Salesperson wants to start from home, visit every city
on their list, then return home for as cheaply as possible.

Definition
The Travelling Salesperson Problem, or TSP, is the following.
Given a weighted graph G (usually G is the complete graph), what
is the Hamiltonian cycle (i.e. closed walk visit every vertex) of
cheapest weight?

The TSP is Hard



The TSP is at least as hard as finding Hamiltonian cycles

Let G be a graph n and vertex set V and edge set E .
Suppose we want to determine whether G has a Hamiltonian cycle.
Weight a complete graph on the vertex set V as follows: make
every edge in G have weight 1, and every edge not in G have
slightly higher weight:

w(uv) =

{
1 uv ∈ E

1 + ε uv /∈ E

Then, G has a Hamiltonian cycle if and only if there is a solution
to the TSP with weight n.

Bound the TSP instead of solving it



Can almost solve TSP in practice
Programs such as Concorde use sophisticated ideas to get solutions
to TSP within a few percentage points on large data sets.

From TSP Art
by

Craig S Kaplan
and

Robert Bosch



To get an upper bound on TSP, find the weight of any
Hamiltonian cycle

One greedy algorithm: nearest neighbour

Keeping going to the closest city you haven’t been to

Why might nearest neighbour be bad?

Better heuristics exist:

I Nearest insertion: grow loop by inserting nearest city

I Christofide’s Algorithm finds a Hamiltonian cycle at most 3/2
as expensive as the cheapest

These are more involved than nearest neighbour and still don’t
solve problem



To get a lower bound on TSP, can’t use a cycle

Any Hamiltonian cycle has length greater than solution to TSP.

To find lower bound to TSP

I Pick a vertex v ∈ G

I Find a minimum weight spanning tree T on G \ v
I Find the two cheapest edges e1 and e2 out of v

I w(T ) + w(e1) + w(e2) is a lower bound

Need to be able to prove this gives lower bound...



Prove that w(T ) + w(e) + w(f ) ≤ TSP

Suppose that C was the Hamiltonian cycle of minimum weight.
We split the C into two pieces: the two edges f1 and f2 adjacent to
v , and the rest, which we’ll call R.

Edges adjacent to v :

e1 and e2 were the two cheapest edges next to v , so:

w(f1) + w(f2) ≥ w(e1) + w(e2)

The rest:

I C a cycle, so R = C \ v is a path

I Paths are special cases of trees

I R visits every vertex of G \ v
I Hence R a spanning tree and w(R) ≥ w(T )



Example from the 2006 Exam

The following table encodes distances between towns in km:

A
23 B
10 21 C
30 39 21 D
57 45 48 45 E
68 63 59 47 24 F
75 67 66 54 24 11 G

Find lower and upper bounds to the TSP.


