Which graphs are/aren't isomorphic? Prove it.

One solution to warm-up

- Graph B has a vertex of degree 5 ; others have degree sequence $[4,4,4,3,3,3,3]$, so none are isomorphic to B.
- In A, D, E, the three vertices of degree 4 all touch, but not in C, so none are isomorphic to C.
- In A, D, every vertex is adjacent to a vertex of degree 4, but not in E, so none are isomorphic to E.
- But we see below A is isomorphic to D :

A forest is a bunch of trees

Figure: A forest of three trees

Definition

- A forest is a graph without cycles
- A tree is a connected graph without cycles

The Treachery of Definitions (After Magritte)

Figure: Ceci n'est pas un arbre (This is not a tree)

$\lfloor 13 / 2\rfloor$ ways of looking a tree (After Wallace Stevens)

Proposition:

Let G be a graph with n vertices. The following are equivalent.

1. G is a tree (i.e., G connected but has no cycles)
2. There is a unique path in G between any two vertices
3. G is connected and has $n-1$ edges
4. G has no cycles and has $n-1$ edges
5. G is connected, but removing any edge disconnects G
6. G has no cycles, but adding any edge creates a cycle

Informally: Trees are Goldilocks graphs

- Trees have enough edges: they're connected
- Trees don't have too many edges: they have no cycles

Make like a tree and get out of here (After Biff Tannen)

Definition (Tree)
Let T be a tree. A vertex $v \in T$ is a leaf if it has degree 1 .
Lemma
Let T be a tree with $2 \leq n<\infty$ vertices. Then T has at least two leaves.

Proof 1: See title of slide.
Pick an edge, and try to "leave" - that is, walk as far as you can.

- No loops, so you'll never return to where you are
- Finitely many vertices, so it can't go on forever

Eventually you'll get stuck - that's a leaf.

Pruning Trees

Part of Proposition:
If T is a tree with n vertices, then T has $n-1$ edges.
Proof: Induct on n

- Base case: $n=1$
- Now assume that all trees with $n-1$ vertices have $n-2$ edges
- If T is a tree with n vertices, it has a leaf v (by Lemma)
- Delete v and the edge next to it to get a new tree T^{\prime}
- T^{\prime} has $n-1$ vertices, so $n-2$ edges, so T has $n-1$ edges.

Another use of the handshaking lemma

Part of Proposition:
If G is a connected graph with n vertices and $n-1$ edges, then G is a tree.

Proof: induct on n

- Base case: $n=1$
- Assume proposition is true for all graphs with $n-1$ vertices
- Since G is connected, it has no vertices of degree 0
- Use handshaking to show G must have a vertex v of degree 1
- Delete v and the edge next to it to get a new graph G^{\prime}
- G^{\prime} is a tree, so G must have been as well

Chemistry

Chemical formulas encode degree sequences

Atom	C	N	O	H
Degree	4	3	2	1

Shortcuts around Carbon and Hydrogen

Figure: Two pictures of Caffeine

- Unlabelled vertices are Carbon
- Hydrogen not drawn; inferred to make degrees correct

Isomers are graphs with the same degree sequence

Definition
An Alkane is a molecule with formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

Definition (Isomer)
Two different molecules are isomers if they have the same chemical formula.

Lemma: Any alkane is a tree.
Proof: Handshaking.
Question: How many isomers does $\mathrm{C}_{5} \mathrm{H}_{12}$ have?

