
PROBLEM SET 4

Question 1 (7 Marks, 2014 Exam). Each of seven students has chosen three courses
from ten options, and must sit an exam for each of his or her three choices. Two
students sitting the same exam must do so at the same time, but no student can sit
more than one exam in the same day. The table of choices is given below:

student Exams student Exams
A 1, 2, 3 E 6, 8, 10
B 1, 4, 5 F 7, 8, 9
C 2, 4, 6 G 1, 9, 10
D 3, 5, 7

Explain how to relate this question to a graph G so that the chromatic number of G
is the smallest number of days required to schedule the exams. Find this number;
you should give an example of a schedule with that number of days and explain
why it cannot be done with fewer.

Proof. We construct a graph G so that the vertices are the exams, and there is an
edge between two exams if there is a student taking both exams. Then if we take
the colours to be the possible exam dates, we see that a vertex colouring of G is
equivalent to an admissible exam schedule, and so χ(G) gives the smallest number
of days required to schedule the exams. The graph G is shown below.
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We see G has triangles, so χ(G) ≥ 3. Trying to colour G with three colours, 1,2,3
must be three different colours, without loss of generality 1 is Red, 2 is Blue, and 3
is Green. Then

• Using triangle 1,2,4, we see 4 must be green.
• Using triangle 1,3,5, we see 5 must be blue.
• Using triangle 2,4,6, we see 6 must be red
• Using triangle 3,5,7, we see 7 must be red

Now 8,9 and 10 must all be different colours as they are a triangle. But none of
them can be red: 8 is adjacent to 6 and 7, which are red, and 9 and 10 are adjacent
to 1, which is red. Therefore, χ(G) > 3.

It is not hard to colour G with 4 colours, however: in our attempt at colouring
them above, 8,9 and 10 are *only* adjacent to red vertices, so we can make 8 blue,
9 green, and 10 a fourth colour, say yellow. This would give the corresponding
schedule:

Day 1 (red) 1, 6, 7
Day 2 (blue) 2, 5, 8

Day 3 (Green) 3, 4, 9
Day 4 (Yellow) 10

though many other schedules are possible.
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QUESTION 2 (4 MARKS, 2014 EXAM)

Define the chromatic index of a graph. What is the chromatic index of the graph

shown:
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Proof. The chromatic index χ′(G) of a graph G is the fewest number of colours
needed to colour the eges of G so that edges that share a vertex have different
colours.

In the graph G shown, every vertex has at least degree four, and so at least
four colours are necessary – the four edges touching 1 must all be different. Let’s
try to colour the edges with four colours. Without loss of generality the two edges
between 1 and 2 are red and blue, and the two edges between 1 and 5 are green and
yellow. Then the two edges between 2 and 3 must also be green and yellow, and
the two edges between 3 and 4 must be red and blue, but now an edge between 4
and 5 cannot be red, blue, green or yellow, and so we see χ′(G) > 4.

By Vizing’s theorem we know then that χ′(G) = 5, but it is best to illustrate
a colouring with 5 colours; one attractive way to do this is to colour the “inner”
and “outer” five cycles with the same five colours in the same order, but shifted
slightly. In other words something like the following, where we have also used
the number 1-5 as our colours:
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QUESTION 3 14 POINTS

Part 1 (4 points). Define the chromatic polynomial PΓ(k) of a graph Γ. Explain
how to determine the number of vertices, the number of edges, and the chromatic
number of Γ from the chromatic polynomial.

Proof. The chromatic polynomial PΓ(k) is the number of ways to colour the vertices
of Γ with k colours so that adjacent vertices have different colours. The number of
vertices of Γ is the degree of PΓ(k), and the number of edges is the negative of the
next leading coefficient. In other words, if n is the number of vertices in Γ, and m
is the number of edges, then

PΓ(k) = kn −mkn−1 + lower order terms

The chromatic number χ(Γ) is the least number k so that PΓ(k) 6= 0. �

Part 2 (5 points). State the deletion-contraction relation for PG(k), and use it prove
that PG(k) is indeed a polynomial.

Proof. The deletion-contraction relation states that if e is an edge in G, then

PG(k) = PG\e(k)− PG/e(k)

where G \ e is G with the edge e deleted and G/e is G with the edge e contracted
to a vertex.

To prove that PG(k) is a polynomial, we induct on the number of edges in G.
As a base case, if G has no edges and n vertices, then it is the empty graph En, and
PEn(k) = kn as we can colour each of the n vertices independently.

For the inductive step, assume that G has m > 0 edges, and that we know that
for every graph with less than m edges PG(k) is a polynomial. Let e be any edge of
G. By deletion contraction we have that

PG(k) = PG\e(k)− PG/e(k)

but since G \ e and G/e we know by the inductive hypothesis that both terms on
the right hand side are polynomials, and hence PG(k) is a polynomial. �

Part 3 (5 points). Determine the chromatic polynomial of the graph H below:
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Proof. One way is to use deletion contraction on the edge e between 1 and 2. If
we delete this edge, then colouring vertex by vertex from, say, vertex 2, there are k
ways to colour vertex 2, k-1 ways to colour 3, k-2 ways to colour 4 and then 5, and
the k-1 ways to colour 1 and 6, giving PH\e(k) = k(k− 1)3(k− 2)2.

On the other hand, if we contract the edge e between 1 and 2, we get a K4 with
on extra vertex attached by a single edge, and one can see colouring vertex by
vertex or by the gluing formula that this has PH/e(k) = k(k− 1)2(k− 2)(k− 3).

Hence

PH(k) = PH\e(k)− PH/e(k)

= k(k− 1)3(k− 2)2 − k(k− 1)2(k− 2)(k− 3)

= k(k− 1)2(k− 2) [(k− 1)(k− 2)− (k− 3)]

= k(k− 1)2(k− 2)(k2 − 4k + 5)

Another way is by case by case analysis: either vertices 2 and 5 have the same
colour, or they have different colours.

If vertices 2 and 5 have different colours, then vertices 2-5 form a K4, and there
are k(k− 1)(k− 2)(k− 3) ways to colour them, then there are k− 2 ways to colour
vertex 1 and k− 1 ways to colour vertex 6, giving k(k− 1)2(k− 2)2(k− 3) colour-
ings in this case.

If vertices 2 and 5 have the same colour, there are k ways to choose that colour,
then (k− 1) ways to colour, in order, vertices 1, 6, and 3, and finally k− 2 ways to
colour vertex 4, giving k(k− 1)3(k− 2) colourings in this case.

Adding the cases, we have

PH(k) = k(k− 1)2(k− 2)2(k− 3) + k(k− 1)3(k− 2)

= k(k− 1)2(k− 2) [(k− 2)(k− 3) + (k− 1)]

= k(k− 1)2(k− 2)(k2 − 4k + 5)
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