MAS439 Lecture 19 Fields of fractions, Function fields

October 26th

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Going back to Primary school

Remember how we construct the rational numbers $\mathbb Q$ out of the integers $\mathbb Z$:

A rational number is an equivalence class of (a, b) ∈ Z × Z, with b ≠ 0 (we write ^a/_b)

•
$$\frac{a}{b} \sim \frac{c}{d}$$
 if $ad - bc = 0$

$$\bullet \ \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

These operations make \mathbb{Q} into a field. The inverse of a/b is b/a, and \mathbb{Z} sits inside \mathbb{Q} as a subring, via $n \mapsto n/1$. But we can generalize this...

Let *R* be an integral domain. The *field of fractions* of *R*, denoted K(R), is the field where the elements consists of equivalence classes of the form a/b, with $a, b \in R, b \neq 0_R$ with

One has to check that K(R) actually is a ring, and a field, which is a bit laborious but not difficult or enlightening.

Examples

$K(\mathbb{Z}) = \mathbb{Q}$

This is the example we used to motivate the definition of K(R).

Rational functions

Recall that a function of one variable is called *rational* if it is the ratio of polynomials, e.g.

$$\frac{x}{x^2-1}$$
, $\frac{x^3+3x}{ix^2+x+.5}$, $\frac{x^2-x}{x-1}$, $\frac{x}{1}$

It is clear the set of rational functions form a field, sometimes denoted $\mathbb{Q}(t)$, $\mathbb{R}(t)$, $\mathbb{C}(t)$. Then $\mathbb{Q}(t) = \mathcal{K}(\mathbb{Q}(t))$.

More examples - nonisomorphic rings with isomorphic fields of fraction

 $K(k) \cong k$ If *R* is already a field, then $K(R) \cong R$. So, we have $K(\mathbb{Z}) \cong \mathbb{Q} \cong K(\mathbb{Q})$.

But many more ...

But maybe we're in between somewhere; let $S = \mathbb{Z}[x]/(2x-1)$. Then in *S*, we see that *x* is acting as 1/2, and in particular we see powers of two have inverses in *S*. Then $K(S) \cong \mathbb{Q}$.

Why integral domains?

In the definition of K(R), we required that R be an integral domain. Why?

Lemma

Suppose that R is not an integral domain. Then K(R) is the trial ring.

Proof.

Let uv = 0 in R with $u, v \neq 0$. Then in K(R), we have

$$1 = \frac{1}{u} \cdot u \cdot v \cdot \frac{1}{v} = 0.$$

Even if R isn't an integral domain, we can still add inverses to some things...

Function Fields

Definition

Let $X \subset \mathbb{A}_k^n$ be an affine variety, so by definition k[x] is an integral domain. The *function field* k(X) of X (sometimes called the *coordinate field*), is the field of fractions of the coordinate ring of X, i.e.

$$k(X) := K(k[X])$$

Example

For $X = \mathbb{A}_k^n$, we have $k[\mathbb{A}_k^n] = k[x_1, \dots, x_n]$, and so $k(\mathbb{A}_k^n) = k(x_1, \dots, x_n)$, the ring of rational functions in *n* variables.

More examples: varieties with isomorphic function fields

Example
Let
$$X = V(xy - 1) \subset \mathbb{A}^2_{\mathbb{C}}$$
. Then we see that
 $\mathbb{C}[X] = \mathbb{C}[x, y]/(xy - 1) \cong \mathbb{C}[x, x^{-1}]$
Let the coordinate ring of X is the ring of Laurent r

I.e., the coordinate ring of X is the ring of Laurent polynomials. Thus:

$$\mathbb{C}(X) \cong \mathbb{C}(t) \cong \mathbb{C}(\mathbb{A}^1_{\mathbb{C}})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

More examples, continued

Example

As a less trivial example, let $Y = V(x^2 - y^3)$ be the cuspidal cubic.

We have seen that $\mathbb{C}[Y] \cong \mathbb{C}[t^2, t^3]$. But

$$\mathcal{K}(\mathbb{C}[t^2,t^3])\cong\mathbb{C}(t)\cong\mathbb{C}[\mathbb{A}^1_{\mathbb{C}}]$$

since t^3/t^2 behaves just like t.

Elements of function fields as functions

Remember that we viewed k[X] as polynomial functions from $X \rightarrow k$.

Thus, if $f = g/h \in k(X)$ we may view f as a partially defined function from $f \to k$, where if $a \in X$, we set f(a) = g(a)/h(a), which makes sense as long as h(a) = 0.

We write $f : X \dashrightarrow k$ to distinguish that the function may not be defined everywhere.

Switching representatives

In first and second year, we viewed $\frac{x^2-1}{x-1}$ and x+1 as different functions, as the first isn't defined at x = 1. But in $\mathbb{C}(x)$, these two functions are defined to be equal.

Domains of rational functions

Definition

Let $f \in k(X)$ be a rational function.

- We say f is regular at a ∈ X if there exists a representative g / h of f with h(a) ≠ 0.
- ► The *domain* of *f*, written dom(*f*), is the set of points U ⊂ X where *f* is regular.

Thus, a rational function $f \dashrightarrow k$ gives an actual function $f : dom(f) \rightarrow k$.

Example of finding the domain

Let $X = V(y^2 - x^3)$, and consider $f = y/x \in \mathbb{C}(X)$. It is clear that f is well defined everywhere except perhaps at the origin (0,0). We now show $(0,0) \notin \text{dom}(f)$. Suppose otherwise; then f has a representative p/q, with q(0,0)0. Hence, q has a nonzero constant term, say q(0,0) = c. But since $y/x \sim p/q$, we have yq(x, y) = xp(x, y). But the yterm of the left hand side is $cy \neq 0$, while the right hand side has no y term, contradiction.

There may not be one best representative

Consider $X = V(xy - zw) \subset \mathbb{A}^4_{\mathbb{C}}$, sometimes called the *conifold*. Note that in $\mathbb{C}(X)$ we have z/x = y/w. Now z/x is well defined as long as $x \neq 0$, while y/w is well defined as long as $w \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Regular functions

Definition

A rational function $f \in k(X)$ is called *regular* if its domain of definition dom(f) is all X.

Lemma

Let $k = \overline{k}$. Then $f \in k(X)$ is regular if and only if we have $f \in k[x] \subset k(X)$; that is, if f has a representative of the form f = g/1.

Proof.

Idea:

▶ Show that $I(f) = 0 \cup \{h : \exists g/h = f\}$ is an ideal in k[x].

• Apply the Nullstellensatz to I(f).