Commutative Algebra Lecture 2

Last time

- Course set-up: 5 homeworks
- What and Why of normal subgroups (quotients!)
- Homomorphisms preserve structure (will review)
- Commutative Rings can add and multiply
- ► Most important example: Z, Q, R, C, Z/nZ, R[x]. Others?

Today

- Types of elements and rings
- Test clicker system
- Start homomorphisms (Section 4 of notes)

Looking into the future

- The last HW question depends on Section 4
- Next session we will finish Section 4, motivate 5 and 6
- After that, roughly one section / lecture

Before next week's lecture ...

- Read Sections 2-4 of the notes
- Email me questions / comments you have about them

The first Homework is due October 18th!

Basic definitions: types of elements

Definition

```
We say r \in R is a unit if there exists an element s \in R with rs = 1_R
```

Definition

We say that $r \in R$ is a zero divisor if there exists $s \in R, s \neq 0_R$ with $rs = 0_R$

Definition

We say that $r \in R$ is *nilpotent* if there exists some $n \in \mathbb{N}$ with $r^n = 0_R$

Examples!

Basic definitions: Types of rings

Definition

We say R is *field* if every nonzero element is a unit.

By convention, the trivial ring is not a field.

Definition

We say R is an *integral domain* if it has no zero divisors.

Definition

We say that R is *reduced* if it has no nilpotent elements.

Examples!

Theorem

 $R \text{ a field} \implies R \text{ an integral domain} \implies R \text{ is reduced}$

Clicker session: ttpoll.eu

Review: (Homo)-morphisms preserve structure

Objects

Often in math we study things that are sets with some extra sturcture (Groups, rings, fields, vector spaces, metric spaces, topological spaces, measure space, ...).

Maps or Morphisms

In these situations, usually there is a notion of *map* or *morphism* between these objects – these are functions that "preserve the extra structure"

- Group homomorphisms preserve addition, units, inverses
- Vector space morphisms (linear maps) preserve addition and multiplication by scalars

What do we mean by "preserve structure"?

More specifically, recall that a group G has:

- an identity e
- ▶ a multiplication map $G \times G \rightarrow G : (g, h) \mapsto g \cdot h$
- an inverse map $G \to G : g \mapsto g^{-1}$.

Definition

A group homomorphism $\varphi: {\it G} \rightarrow {\it H}$ is a map of sets so that

1.
$$\varphi(e_G) = e_H$$

2. $\varphi(g^{-1}) = \varphi(g)^{-1}$
3. $\varphi(g_1 \cdot g_2) = \varphi(g_1) \cdot \varphi(g_2)$

Warning: For us, "preserve the structure" doesn't have to be this striaghtforward.

What is a ring homomorphism?

Ring Homomorphisms

Definition

A ring homomorphism $\varphi: R \rightarrow S$ is a function so that

1. $\varphi(0_R) = 0_S$ 2. $\varphi(1_R) = 1_S$ 3. $\varphi(-r) = -\varphi(r)$ 4. $\varphi(r+s) = \varphi(r) + \varphi(s)$ 5. $\varphi(rs) = \varphi(r)\varphi(s)$

This is slightly more involved than the definition in the notes, because some of these properties follow from others...

Which?

Examples of ring homomorphisms!