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Last time, we introduced the quotient ring R/I

Definition
Let R be a ring, and I an ideal. Then the ring R/I is the set of
equivalence classes of elements of R, where r ∼ s if r − s ∈ I .
Addition and multiplication are given by adding and multiplying
representatives:

[r ] + [s ] = [r + s ]

[r ] · [s ] = [r · s ]

1R/I = [1]

Lemma
The map p : R → R/I defined by p(r) = [r ] is a homomorphism.



The problem with this definition:

To talk about what the elements are, we need to understand what
the equivalence classes are.

Usually we want to pick a unique representative from each
class
This is exactly like thinking:

Z/n = {0, 1, . . . , n− 1}

instead of the strict definition:

Z/n =
{
{a+ nZ} : a ∈ Z

}

The division algorithm is a good way to do this



Examples



Example: C ∼= R[x ]/(x2 + 1)

The division algorithm gives unique representatives

Any polynomial p(x) can be written uniquely as

p(x) = (x2 + 1)q(x) + bx + a

.
This means that [p(x)] = [bx + a], so every class can be
represented by a linear polynomial; furthermore, this representation
is unique.

It’s clear [a+ bx ] + [c + dx ] = [a+ c + (b+ d)x ].



Example: C = R[x ]/(x2 + 1)

Multiplication of representatives

[a+ bx ] · [c + dx ] = [ac + (ad + bc)x + bdx2]

But this isn’t linear; we need to get rid of the x2 term. Note that
bdx2 = bd(x2 + 1)− bd , and so [bdx2] = [−bd ].
Thus, we see

[a+ bx ] · [c + dx ] = [ac − bd + (ad + bc)x ]

which, if we replace x with i , is exactly the formula for multiplying
complex numbers.



Example: R[x ]/(x2)

First, we have to understand it as a set – we want to give a unique
name to each element of R/I . This is usually done by picking a
representative from each coset in some systematic way.
I consists of linear combinations of monomials of degree 2 or
bigger. So every equivalence class contains exactly one linear term
a+ bx . We see that

[a+ bx ] · [c + dx ] = [ac + adx + bcx + adx2] = [ac + (ad + bc)x ]



Constructing F4

We claim that R = F2[x ]/(x2 + x + 1) is a field with 4 elements.
Exactly as in the last two examples, the division algorithm gives
every equivalence class has a unique linear representative a+ bx ;
now a, b ∈ F2, so there are indeed four elements.
We check:

[x ] · [x + 1] = [x2 + x ] = [1]

So every nonzero element has an inverse, and so R is a field.



A case where the division algorithm doesn’t hold:

Consider the ring Z[x ]/(10x − 1):

Can’t divide x by 10x − 1 and get a polynomial of lower degree.

What is this ring, intuitively?

Since we’re setting 10x − 1 = 0, then x “should be” 1/10. So,
we’ve taken the integers and added 1/10.

How to make this intuition formal?
To really understand the ring Z[x ]/(10x − 1), will find two
different systems ofunique representatives for the equivalence
classes.



Method 1: Muddle along with division algorithm

Lemma
For any polynomial p(x) ∈ Z[x ], there is a unique polynomials
q(x) and a unique integer r , so that

I p(x) = q(x)(10x − 1) + r

I q(x) = ∑ anx
n with 0 ≤ ai ≤ 9

Proof.

I Existence

I Uniqueness

Every number in Z[1/10] has a unique terminating decimal
expansion.



Method 2: Divide “backwards”

Lemma
For any p(x) ∈ Z[x ], there is a unique q(x) ∈ Z[x ], n ≥ 0, and
a ∈ Z, so that

p(x) = q(x)(1− 10x) + axn

and a is not divisible by 10 if n > 0.

Proof.

I Existence: divide backwards as power series to get remainder
axm, if 10 divides a, then backtrack

I Uniqueness

This is writing an element of Z[1/10] as a/10n, and then if a is
divisible by 10 we can cancel some powers of 10.



The Universal Property of
Quotient Rings



The Universal Property for Quotient rings

Suppose that ϕ : R → S is a ring homomorphism such that
I ⊂ ker(ϕ), and let p : R → R/I be the quotient map. Then there
exists a unique ring homomorphism ϕ : R/I → S satisfying
ϕ = ϕ ◦ p.

Put another way

The following diagram commutes:

R S

R/I

p
!ϕ

ϕ



What the universal property “really means”

Universal property as a slogan:

Maps out of R/I are the same thing as maps out of R whose
kernel contains I

This property defines the quotient ring R/I .

Lemma
Let R be a ring, and I be an ideal. If q : R → T also satisfies the
universal property of the quotient ring, then we have T ∼= R/I .

Proof.
All we have is the Universal Property, so we’re going to use it over
and over again. . .

Universal properties are an idea from category theory.



Definition of a category

A category C consists of

I A collection of objects Ob(C)
I For every pair of objects A,B a set HomC(A,B) of morphisms

(or arrows)

We write f : X → Y to mean f ∈ HomC(A,B).
We can compose arrows that line up (i.e., if
f : X → Y , g : Y → Z then we can make gf : X → Z )
This composition is associative; and every object has an identity
morphism 1A so that f 1A = 1B f = f .



Examples of categories

I Sets and functions between them

I Groups and group homomorphisms

I Rings and ring homomorphisms

I Vector spaces over a field k and linear maps between them

I Topological spaces and continuous maps between then

All of the above are examples where our objects are sets, and our
morphisms are maps between the sets preserving some kind of
structure, but categories don’t have to be this way.



Category theory is a philosophy

I Rather than study an object itself, we should study how it
relates to other object of its kinds.

I moves the focus to the morphisms

I Really focus goes farther, between how different categories
relate to each other...

I Captures when you do the same thing in different categories



Example tying this together: product as a Universal
Property

Definition
Let X ,Y be two objects in a category C. The product, X × Y , is
an object of C together with maps p1 : X × Y → X and
p2 : X × Y → Y satisfying the following universal property: for
every object Z and pair of maps f : Z → X , g : Z → Y , there is a
unique map h so that f = p1h and g = p2h.

Z

X X × Y Y

f
!h

g

p1 p2


