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Last week we motivated and defined the quotient ring R/I , proved
it was a ring, and looked at some examples, and talked about the
Universal property of R/I , without proving it.
Today is centred around the first isomorphism theorem, which
states that for any homomorphsim
ϕ : R → S , Im(ϕ) ∼= R/ ker(ϕ).



The Universal Property for Quotient rings

Suppose that ϕ : R → S is a ring homomorphism such that
I ⊂ ker(ϕ), and let p : R → R/I be the quotient map. Then there
exists a unique ring homomorphism ϕ : R/I → S satisfying
ϕ = ϕ ◦ p.

Put another way

The following diagram commutes:

R S

R/I

p
!f

f



What the universal property “really means”

Universal property as a slogan:

Maps out of R/I are the same thing as maps out of R whose
kernel contains I

This property defines the quotient ring R/I .

Categorical thinking as a slogan:

Understand an object by understanding how it relates to other
objects. As an example, if you know all the maps out of an object,
you know the object.



Proof of the Universal Property

Uniqueness of ϕ:

If [r ] ∈ R/I , we want to know ϕ([r ]). Noting that [r ] = p(r), we
see that having ϕ = ϕ ◦ p is equivalent to:

ϕ([r ]) = ϕ(p(r)) = ϕ(r)

Thus, we take as a definition ϕ([r ]) := ϕ(r) to guarantee
ϕ = ϕ ◦ p.

What’s left?

I Show ϕ is a homomorphism;

I We are defining what ϕ in terms of representatives, so we
must show it’s well defined.



Proof of the Universal Property

ϕ is a ring homomorphism:

We check addition:

ϕ([s ] + [r ]) = ϕ([r + s ])

= ϕ(r + s)

= ϕ(r) + ϕ(s)

= ϕ([r ]) + ϕ([s ])

Multiplication and unit are similar.



Proof of the Universal Property

ϕ is well defined:

Suppose that r ∼ s; we must show ϕ([s ]) = ϕ([r ]), i.e., that
ϕ(r) = ϕ(s).
But r ∼ s means r = s + i for i ∈ I , so

ϕ(r) = ϕ(s + i) = ϕ(s) + ϕ(i) = ϕ(s)

since I ⊂ ker(ϕ).



Digging old tools out of the shed

To prove the isomorphism theorem, we are going to use the
following two facts we’ve already seen:

I Any ring homomorphism ϕ : R → S factors as the surjection
from ϕ : R → Im(ϕ) and the inclusion i : Im(ϕ)→ S

I A homomorphism ϕ is injective if and only if ker(ϕ) = 0.



Isomorphism Theorem Restated

Any ring homomorphism ϕ : R → S can be written uniquely in the
form

ϕ = i ◦ ϕ′ ◦ p

where

I p : R → R/ ker ϕ is the quotient map

I ϕ′ : R/ ker(ϕ)→ Im(ϕ) is an isomorphism

I i : Im(ϕ)→ S is the inclusion

R S

R/ ker ϕ Im(ϕ)

ϕ

p i

ϕ′



Proof of the First isomorphism theorem

From the toolshed, we have a surjective map ϕ̃ : R → Im(ϕ) with
ϕ = i ◦ ϕ̃. That is, we have the upper right triangle commutes:

R S

R/ ker ϕ Im(ϕ)

ϕ

p
ϕ̃

i

ϕ′

Furthermore, since i is injective, we have ker ϕ̃ = ker i ◦ ϕ = ker ϕ



Proof of the first isomorphism theorem

R S

R/ ker ϕ Im(ϕ)

ϕ

p
ϕ̃

i

ϕ′

To get the bottom triangle, we apply the universal property of
R/ ker ϕ to ϕ̃ to construct the map ϕ′.

I Bottom triangle commutes by universal property

I ϕ′ surjective since ϕ̃ is

I ϕ′ injective since:

ϕ′([r ]) = 0 ⇐⇒ ϕ̃(r) = 0 ⇐⇒ r ∈ ker(ϕ̃) ⇐⇒ r ∼ 0R



Application of Isomorphism theorem: R[x ]/(x2 + 1) ∼= C

Evaluation at i gives a map

f : R[x ]→ C f : p 7→ p(i)

I We have x2 + 1 ∈ ker(f ), and so by definition
(x2 + 1) ∈ ker(f )

I By universal property, get a map f : R [x ]/(x2 + 1)→ C

I First isomorphism theorem says this map is an ∼= if
ker(f ) = (x2 + 1)

I If g /∈ (x2 + 1), can see g /∈ ker(f ) using division algorithm:

g = (x2 + 1)p(x) + ax + b =⇒ f (g) = ai + b



The pullback of an ideal is an ideal

Lemma
Let f : R → S a map, I ⊂ S an ideal. Then f −1(I ) ⊂ R an ideal

Proof.
Suppose a, b ∈ f −1(I ), r ∈ R

I f −1(I ) is nonempty since it contains 0.

I We have a+ b ∈ f −1(I ) since

f (a+ b) = f (a) + f (b) ∈ I

I We have r · a ∈ f −1(I ) since

f (ar) = f (a)f (r) ∈ I



Lemma
If I ⊂ J ⊂ R are two ideals, then

J/I = {[r ] ∈ R/I : r ∈ J}

is an ideal in R/I .

Proof.
Need to check:

I Well defined: i.e., if [r1] = [r2] then
[r1] ∈ J/I ⇐⇒ [r2] ∈ J/I .

I nonempty

I Closed under addition

I closed under multiplication by elements of R/I .



The lemmas give us maps back and forth between ideals of R
containing I and ideals of R/I :

I If K ⊂ R/I an ideal, then I ⊂ p−1(K ) ⊂ R an ideal.

I If I ⊂ J ⊂ K , then J/I an ideal of R/i .

Lemma
The above maps are inverse

The fact that p−1(J/I ) = J is exactly the definition.
Now suppose K ⊂ R/I an ideal; we must show p−1(K )/I = K .

I If [a] ∈ p−1(K ), then a ∈ p−1(K ), so p(a) = [a] ∈ K .

I If [a] ∈ K , then a ∈ p−1(K ), and so [a] ∈ p−1(K )/I



A corollary

Lemma
If R is a principal ideal domain, then R/I is a principal ideal
domain.

Proof.
Suppose that KR/I is an ideal. Then K is of the form J/I for
some ideal I ⊂ J ⊂ R. Since R is a principal ideal domain,
J = (r). But then

(
[r ]

)
generates J/I .

Since Z is a principal ideal domain, we have Z/k is.



Third isomorphism theorem

Theorem
If I ⊂ J ⊂ R ideals, then R/J ∼= (R/I ) ∼= (J/I )

Proof.
We construct a map f : R/J → R/I by taking f ([r ]R/J) = [r ]R/I .
Need to check:

I Well defined

I Surjective

I ring homomorphism

I ker(f ) = J/I
Then it follows from first isomorphism theorem.



Examples

I What do we get from (2) ⊂ (8) ⊂ Z?

(Z/8)/(2) ∼= Z/2

I What do we get from (2) ⊂ (2, x2 + x + 1) ⊂ Z[x ]?

Z[x ]/(2, x2 + x + 1) ∼=
(
Z[x ]/(2)

)
/(2, x2 + x + 1)

∼= F2[x ]/(x2 + x + 1)
∼= F4


