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Plan: slow down a little

Last week - Didn’t finish

I Course policies + philosophy

I Sections 2-4: Rings, examples, homomorphisms

Today

I Finish Section 4: Isomorphisms, image, kernel

I Cover Section 5: Subrings

I Start Section 6: Ideals

Next week

I Finish Chapter 6: Ideals

I Discuss Writing/Homework

I Do Chapter 7: Quotient rings



Isomorphisms

Informally, we think of things as being isomorphic if they are “the
same”. This is subtly and importantly different than being “equal”.

Definition
A ring homomorphism ϕ : R → S is a isomorphism if there is
another ring homomorphism ψ : S → R with

ϕ ◦ ψ = IdS , ψ ◦ ϕ = IdR

A silly example

A green copy of Z and a red copy of Z are isomorphic, but they
aren’t equal.



A nontrivial example

Lemma
Let X = {x1, . . . , xn} be a finite set with n elements, and let R be
a ring. Then

Fun(X ,R) ∼= Rn := R × R × · · · × R︸ ︷︷ ︸
n times

Proof

I Define ϕ : Fun(X ,R)→ Rn by
ϕ(f ) = (f (x1), f (x2), . . . , f (xn)),

I Define ψ : Rn → Fun(X ,R) by [ψ(r1, . . . , rn)](xi ) = ri .

I Check a buncha stuff.



Another viewpoint on isomorphisms

Lemma
If ϕ : R → S is a bijective homomorphism, then ϕ is an
isomorphism.

Proof.
Since ϕ is a bijection, we know from first year that there is an
inverse map ϕ−1 of sets, we need to show that ϕ−1 is a ring
homomorphism.

We need to check... (See board and/or notes)

In notes, this is taken as the definition of isomorphic rings, but the
definition we gave is the right one because it generalizes. It is
NOT true that if f : X → Y is a bijective continuous map of
topological spaces, then X ∼= Y .



Nonisomorphic rings

Any reasonable property of rings (i.e., defined in terms of properties
of the ring structure, and not in terms of something extraneous like
being green or red) are invariant under isomorphism.

So, for example, if R and S are isomorphic, and R is an integral
domain, than so is S .

To show two rings R and S are not isomorphic, it is usually easiest
to find something true about one ring but not the other.

Lemma
None of the rings Z/nZ, Z, Q, R or C are isomorphic to each
other.

Proof:

? ? ?



Kernels and Images, ideals and subrings

From a ring homomorphism ϕ : R → S , we define the kernel
ker(φ) and the image Im(ϕ) in the same way we did for linear
maps of vector spaces:

Im(ϕ) = {s ∈ S : s = ϕ(r) for some r ∈ R}

ker(ϕ) = {r ∈ R : ϕ(r) = 0S}

Though the kernel and the image are both subsets of a ring, it
turns out they are very different types of subsets.

I The kernel is the prototypical (only!) example of an ideal

I The image is the prototypical (only!) example of a subring



A simple use of image and kernel

Lemma
Let ϕ : R → S a ring homomorphism. Then

1. ϕ is surjective if and only if Im(ϕ) = S

2. ϕ is injective if and only if ker(ϕ) = {0R}

Proof

? ? ?



Definition of a subring

Let R be a ring, and let S ⊂ R be a subset.

Idea
We say S is a subring of R if it is a ring, and all its structure
comes from R.

Definition
We say S ⊂ R is a subring if:

I S is closed under addition and multiplication:

r , s ∈ S implies r + s, r · s ∈ S

I S is closed under additive inverses: r ∈ S implies − r ∈ S .

I S contains the identity: 1R ∈ S

Lemma
A subring S is a ring.



First examples of subrings

I Z ⊂ Q ⊂ R ⊂ C ⊂H is a chain of subrings.

I if R any ring, R ⊂ R [x ] ⊂ R [x , y ] ⊂ R [x , y , z ] is a chain of
subrings.



Another chain of subrings

R ⊂ R[x ] ⊂ C∞(R, R) ⊂ C (R, R) ⊂ Fun(R, R)

Where, working backwards:

I Fun(R, R) is the space of all functions from R to R

I C (R, R) are the continuous functions

I C∞(R, R) are the smooth (infinitely differentiable) functions

I R[x ] are the polynomial functions

I We view R as the space of constant functions



Non-examples of subrings

I N ⊂ Z

I Let K be the set of continuous functions from R to itself with
bounded support. That is,

f ∈ K ⇐⇒ ∃M s.t. |x | > M =⇒ f (x) = 0

I Let R = Z×Z, and let S = {(x , 0) ∈ R |x ∈ Z}.
I {0, 2, 4} ⊂ Z/6Z



The image of a homomorphism is a subring

Lemma
Let ϕ : R → S be a homomorphism. Then Im(ϕ) ⊂ S is a subring.

Proof.
We need to check Im(ϕ) is closed under addition and
multiplication and contains 1S .



Ideals



Generating subrings



Motivation for generators from Group theory

When working with groups, we often write groups down in terms
of generators and relations.

Generators are easy

To say a group G is generated by a set of elements E , means that
we can get G by “mashing together” the elements of E in all
possible ways. More formally,

G = {g1 · g2 · · · gn|gi or g−1i ∈ E}

Relations are harder
Typically there will be many different ways to write the same
element in G as a product of things in E ; recording how is called
relations.



Reminder example? Okay if it’s new to you

Example

The dihedral group D8 is the symmetries of the square. It is often
written as

D8 = 〈r , f |r4 = 1, f 2 = 1, rf = fr−1〉

Meaning that the group D8 is generated by two elements, r and f ,
satisfing the relations r4 = 1, f 2 = 1 and rf = fr−1.

We’ll want a way to write down commutative rings in the
same way



Preview of rings from generators and relations

We will revist these examples further after we have developed
ideals and quotient rings – you can think of these as the machinery
that will let us impose relations on our generators.

Example (Gaussian integers)

The Gaussian integers are written Z[i ]; they’re generated by an
element i satisfying i4 = 1.

Example (Field with 4 element)

The field F4 of four elements can be written F2[x ]/(x2 + x + 1) –
to get F4, we add an element x that satisfies the relationship
x2 + x + 1 = 0.



Idea of generating set

The subring generated by elements in a set T will again be “what
you get when you mash together everything in I in all possibly
ways”, but this is a bit inelegant and not what we will take to be
the definition.

Attempted definition

Let T ⊂ R be any subset of a ring. The subring generated by T ,
denoted 〈T 〉, should be the smallest subring of R containing T .

This is not a good formal definition – what does “smallest” mean?
Why is there a smallest subgring containing T?



Intersections of subrings are subrings

Lemma
Let R be a ring and I be any index set. For each i ∈ I , let Si be a
subring of R. Then

S =
⋂
i∈I

Si

is a subring of R.

Proof.

? ? ? ? ?



The elegant definition of 〈T 〉

Definition
Let T ⊂ R be any subset. The subring generated by T , denoted
〈T 〉, is the intersection of all subrings of R that contain T .

This agrees with our intuitive “definition”

〈T 〉 is the smallest subring containing T in the following sense: if
S is any subring with T ⊂ S ⊂ R, then by definition 〈T 〉 ⊂ S .

But it’s all a bit airy-fairy

The definition is elegant, and can be good for proving things, but
it doesn’t tell us what, say 〈π, i〉 ⊂ C actually looks like. Back to
“mashing things up”...



What has to be in 〈π, i〉? Start mashing!

Rings are a bit more complicated because there are two ways we
can mash the elements of T – addition and multiplication.

I 1, π, i

I Sums of those; say, 5 + π, 7i

I Negatives of those, say −7i

I Products of those, say (5 + π)4i3

I Sums of what we have so far, say (5 + π)4i3 − 7i + 3π2

I · · ·

leading to things like:((
(5 + π)4i3 − 7i + 3π2

)
· (−2 + πi) + π3 − i

)27
− 5π3i

Of course, could expand that out into just sums of terms like
±πmim...



Formalizing our insight

Definition
Let T ⊂ R be any subset. Then a monomial in T is a (possibly
empty) product ∏n

i=1 ti of elements ti ∈ T . We use MT to denote
the set of all monomials in T .

Note:
The empty product is the identity 1R , and so 1R ∈ MT .

Our insight:

From the “mashing” point of view 〈T 〉 should be all Z-linear
combination of monomials.



The elegant and “mashing” definitions agree

Lemma
〈T 〉 = XT , where XT consists of those elements of R that are
finite sums of monomials in T or their negatives. That is:

XT =

{
n

∑
k=0

±mk

∣∣∣mk ∈ MT

}

Proof.

I XT ⊂ 〈T 〉?
I 〈T 〉 ⊂ XT ?



Example: The Gaussian integers

What’s 〈i〉 ⊂ C?

I What’s the set of monomials?

I But can we simplify even more?



Generating sets for rings

Definition
We say that a ring R is generated by a subset T if R = 〈T 〉. We
say that R is finitely generated if R is generated by a finite set.



Examples of generating sets

I Z = 〈∅〉
I Z/nZ = 〈∅〉
I Z[x ] = 〈x〉 = 〈1 + x〉
I Z[i ] = 〈i〉



Some of your best friends are not finitely generated

I The rationals Q are not finitely generated: any finite subset of
rational numbers has only a finite number of primes appearing
in their denominator.

I The real and complex numbers are uncountably; a finitely
generated ring is countable



A non-finitely generated subring of a finitely generated ring

We’ve seen that Z[x ] = 〈x〉 and so is finitely generated.

S = {a0 + 2a1x + · · ·+ 2anx
n}

that is, S consists of polynomials all of whose coefficients, except
possibly the constant term, are even.

Challenge:

Show that S is a subring of Z[x ] (easy), but that S is not finitely
generated (harder).


