Section 11: Polynomial algebras

Going to do this section a bit fast, as there's not that much there. It formally introduce $k[x_1, \ldots, x_n]$, and answers the question:

Why are polynomial rings and their quotients important? First answer: k[x] satisfies a universal property. Because of universal property:

R is a finitely generated k-algebra $R \cong k[x_1, \dots, x_n]/I$

Universal Property of k[x]

Lemma

k[x] and x satisfies the following universal property: for any k-algebra S and any element $s \in S$, there is a unique k-algebra homomorphism $\varphi_s : k[x] \to S$ such that $\varphi_s(x) = s$.

Proof. Plug *s* in for *x*.

Lemma

If R, r is any k-algebra satisfying the universal property of k[x], then there is a unique isomorphism between R and k[x] identifying r with x.

Similarly, *k*-algebra homomorphisms $k[x_1, ..., x_n]$ to *R* are the same thing as *n*-tuples of elements $r_1, ..., r_n \in R$.

Finitely generated = Quotient of Polynomial Algebra

Finitely Generated \implies quotient

Suppose *R* is generated by r_1, \ldots, r_n .

- ▶ The homomorphism φ : $k[x_1, ..., x_n] \rightarrow R$ sending x_i to r_i is surjective.
- ▶ By first isomorphism theorem $R[x_1, ..., x_n] / \ker(\varphi) \cong R$.

$\mathsf{Quotient} \implies \mathsf{finitely} \ \mathsf{generated}$

In the other direction, if $R = k[x_1, ..., x_n]/I$ for some ideal *I*, then *R* is generated by $[x_1], ..., [x_n]$.

So it might seem like it's restrictive to study $k[x_1, \ldots, x_n]/I$, but we're really studying finitely generated k-algebras.

Can we have infinitely many relations?

I.e., does I need to be finitely generated?

Section 12: Noetherian rings

Definition

A ring *R* is *Noetherian* if it satisfies the *Ascending Chain Condition*, or A.C.C., namely, if every ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

eventually stabilizes, i.e., there exists some N with $I_N = I_{N+1} = I_{N+2} = \cdots$.

Examples

- Any field k
- \mathbb{Z} or more generally any principle ideal domain
- R Noetherian $\implies R/I$ Noetherian

Why study Noetherian Rings?

Because of this lemma:

Lemma

A ring R is Noetherian if and only if every ideal is finitely generated.

Proof.

- \implies Assume I not f.g., try to generate, get contradiction.
- \leftarrow **>** Take an ascending chain I_n
 - $I = \bigcup I_n$ is an ideal, hence $I = (r_1, \ldots, r_k)$
 - If $\{r_i\} \in I_n$, then $I_n = I$,

Hilbert Basis Theorem

Theorem If R is Noetherian, then so is R[x].

Proof.

Main ideas: look at leading coefficients, induct on degree.

Corollary

Let k be a field or principle ideal domain. Then every ideal $l \subset k[x_1, ..., x_n]$ is finitely generated.

Proof.

k-Noetherian $\implies k[x_1, \dots, x_n]$ Noetherian \implies every ideal of $k[x_1, \dots, x_n]$ is finitely generated

Hence: finitely generated k-algebras are finitely presented.