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Last session we defined quotient rings, and proved the universal
property of quotient rings and the isomorphism theorems.

Now we ask the following question: what conditions on I make
R/I nice? Specifically, when is R/I a field/integral
domain/reduced?

Tomorrow we will introduce the notion of algebras.



R/I is a field ⇐⇒ I is maximal
R/I is a domain ⇐⇒ I is prime
R/I is a reduced ⇐⇒ I is radical



An observation about fields

Lemma
A ring R is a field if and only if the only ideals are {0} and R.

Proof.
Suppose R a field, and I 6= {0} an ideal. We must show I = R.

I ∃0 6= r ∈ I .

I Since R a field, ∃s ∈ R s.t. rs = 1.

I Since I ideal, r ∈ I , we have 1 = s · r ∈ I

I But then I = R



Lemma
A ring R is a field if and only if the only ideals are {0} and R.

Proof.
Suppose the only ideals of R are {0} and R, and let 0 6= r ∈ R.
We must show r is a unit.
Consider (r), the ideal generated by r .

I Since r ∈ (r), (r) 6= {0}.
I Hence (r) = R.

I Hence 1 ∈ (r)

I So 1 = r · s



Maps out of fields are injective1

Lemma
Let R be a field, and ϕ : R → S a homomorphism. Then either

1. ϕ is injective

2. S is the trivial ring

Proof.
We have ker(ϕ) is either {0}, in which case ϕ is injective, or
ker(ϕ) = R, in which case 1S = 0S .

1Terms and conditions may apply



Now we can prove what we wanted

By the second isomorphism theorem, ideals in R/I are of the form
J/I , with I ⊂ J ⊂ R an ideal.

Definition
A proper ideal I is maximal if there are no ideals J with I ( J ( R

Lemma
Let R/I is a maximal ideal if and only if R/I is a field.

Note: maximal ideals are often written m (\mathfrak{m})



Maximal ideals of Z

I Ideals of Z are of the form (n).

I (n) ⊂ (m) if and only if m divides n

I So (n) is maximal if and only if the element n is prime

Indeed, we have seen Z/nZ is a field if and only if n is prime.



Maximal ideals always exist

Lemma
Let r ∈ R not be a unit. Then r is contained in some maximal
ideal m ⊂ I

Proof.
Consider the set of all proper ideals of R that contain r , ordered
under inclusion. Suppose

r ∈ I1 ⊂ I2 ⊂ · · · In ⊂ · · ·

is a chain of ideals. Then we can see ∪In is a proper ideal
containing r . We now apply Zorn’s lemma.



R/I is a field ⇐⇒ I is maximal
R/I is a domain ⇐⇒ I is prime
R/I is a reduced ⇐⇒ I is radical



Once you define prime ideals, it’s obvious

Definition
An ideal I ⊂ R is prime if ab ∈ I implies a ∈ I or b ∈ I

Lemma
An ideal I is prime if and only if R/I is an integral domain.

Proof.
For a ∈ R, let [a] denote the image of a in R/I .

Then a ∈ I ⇐⇒ [a] = 0. And a · b ∈ I ⇐⇒ [a] · [b] = 0.

So the definition of I being prime is exactly equivalent to R/I
being an integral domain.



Two little comments

1. Note that R being an integral domain is equivalent to
{0} ⊂ R being a prime ideal.

2. Sometimes you’ll see a prime ideal denote p, (i.e.,
\mathfrak{p}), but it’s a bit old-school now, in contrast to
m for a maximal ideal, which is still commonplace



Example: Prime ideals in Z

Remember all ideals in Z are principal, hence of the form (n).

An element m ∈ Z ∈ (n) if and only if m = an.
That is, if and only if n divides m.

So asking (n) to be prime is asking for n|ab =⇒ n|a or n|b.
That is, asking for n to be prime.



Wait! In Z nearly all prime ideals are maximal?

Note that since all fields are integral domains, we have that all
maximal ideals are prime.

In Z, the converse is nearly true – the maximal ideals are the
ideals (p), with p prime; the prime ideals in Z are (p) and (0).

Essentially the same proof holds true in any principal ideal
domain...



R/I is a field ⇐⇒ I is maximal
R/I is a domain ⇐⇒ I is prime
R/I is a reduced ⇐⇒ I is radical



Some pun about radical ideals

Recall that if I is an ideal, the radical of I was

√
I = {a : an ∈ I for some a}

Definition
We call an ideal radical if I =

√
I . That is, I is radical if and only

if an ∈ I =⇒ a ∈ I .

Lemma
I is radical if and only if

√
I is reduced

Note: R/I being reduced is equivalent to {0} being radical.



Radical ideals in Z

Lemma
The ideal (n) is radical if and only if n is square-free – that is, n
has no repeated prime factors.

Proof.
We have that a ∈

√
(n) if and only if n divides ak for some k , if

and only if a contains all the prime factors of n.

For (n) to be radical, this needs to be equivalent to a dividing n,
i.e., every prime factor of n occuring exactly once.


