MAS439 Lecture 8 Maximal, Prime, Radical

October 129h

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Last session we defined quotient rings, and proved the universal property of quotient rings and the isomorphism theorems.

Now we ask the following question: what conditions on I make R/I nice? Specifically, when is R/I a field/integral domain/reduced?

Tomorrow we will introduce the notion of *algebras*.

R/I is a field $\iff I$ is maximal R/I is a domain $\iff I$ is prime R/I is a reduced $\iff I$ is radical

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An observation about fields

Lemma

A ring R is a field if and only if the only ideals are $\{0\}$ and R.

Proof.

Suppose R a field, and $I \neq \{0\}$ an ideal. We must show I = R.

- ► $\exists 0 \neq r \in I$.
- Since R a field, $\exists s \in R \text{ s.t. } rs = 1$.
- Since I ideal, $r \in I$, we have $1 = s \cdot r \in I$
- But then I = R

Lemma

A ring R is a field if and only if the only ideals are $\{0\}$ and R.

Proof.

Suppose the only ideals of R are $\{0\}$ and R, and let $0 \neq r \in R$. We must show r is a unit.

Consider (r), the ideal generated by r.

- Since $r \in (r)$, $(r) \neq \{0\}$.
- Hence (r) = R.
- ► Hence 1 ∈ (r)

Maps out of fields are injective¹

Lemma

Let R be a field, and $\varphi: R \rightarrow S$ a homomorphism. Then either

- 1. φ is injective
- 2. S is the trivial ring

Proof.

We have ker(φ) is either {0}, in which case φ is injective, or ker(φ) = R, in which case $1_S = 0_S$.

¹Terms and conditions may apply

By the second isomorphism theorem, ideals in R/I are of the form J/I, with $I \subset J \subset R$ an ideal.

Definition

A proper ideal I is *maximal* if there are no ideals J with $I \subsetneq J \subsetneq R$

Lemma

Let R/I is a maximal ideal if and only if R/I is a field.

Note: maximal ideals are often written \mathfrak{m} (\mathfrak{m})

Maximal ideals of $\ensuremath{\mathbb{Z}}$

- Ideals of \mathbb{Z} are of the form (n).
- $(n) \subset (m)$ if and only if *m* divides *n*
- So (n) is maximal if and only if the element n is prime

Indeed, we have seen $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if *n* is prime.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Maximal ideals always exist

Lemma

Let $r \in R$ not be a unit. Then r is contained in some maximal ideal $\mathfrak{m} \subset I$

Proof.

Consider the set of all proper ideals of R that contain r, ordered under inclusion. Suppose

$$r \in I_1 \subset I_2 \subset \cdots I_n \subset \cdots$$

is a chain of ideals. Then we can see $\cup I_n$ is a proper ideal containing r. We now apply Zorn's lemma.

R/I is a field $\iff I$ is maximal R/I is a domain $\iff I$ is prime R/I is a reduced $\iff I$ is radical

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Once you define prime ideals, it's obvious

Definition An ideal $I \subset R$ is prime if $ab \in I$ implies $a \in I$ or $b \in I$

Lemma

An ideal I is prime if and only if R/I is an integral domain.

Proof.

For $a \in R$, let [a] denote the image of a in R/I.

Then
$$a \in I \iff [a] = 0$$
. And $a \cdot b \in I \iff [a] \cdot [b] = 0$.

So the definition of I being prime is exactly equivalent to R/I being an integral domain.

Two little comments

- 1. Note that R being an integral domain is equivalent to $\{0\} \subset R$ being a prime ideal.
- Sometimes you'll see a prime ideal denote p, (i.e., \mathfrak{p}), but it's a bit old-school now, in contrast to m for a maximal ideal, which is still commonplace

Remember all ideals in \mathbb{Z} are principal, hence of the form (n).

An element $m \in \mathbb{Z} \in (n)$ if and only if m = an. That is, if and only if n divides m.

So asking (n) to be prime is asking for $n|ab \implies n|a$ or n|b. That is, asking for n to be prime.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Wait! In \mathbb{Z} nearly all prime ideals are maximal?

Note that since all fields are integral domains, we have that all maximal ideals are prime.

In \mathbb{Z} , the converse is nearly true – the maximal ideals are the ideals (p), with p prime; the prime ideals in \mathbb{Z} are (p) and (0).

Essentially the same proof holds true in any principal ideal domain...

R/I is a field $\iff I$ is maximal R/I is a domain $\iff I$ is prime R/I is a reduced $\iff I$ is radical

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Some pun about radical ideals

Recall that if I is an ideal, the radical of I was

$$\sqrt{I} = \{a : a^n \in I \text{ for some } a\}$$

Definition

We call an ideal *radical* if $I = \sqrt{I}$. That is, I is radical if and only if $a^n \in I \implies a \in I$.

Lemma

I is radical if and only if \sqrt{I} is reduced

Note: R/I being reduced is equivalent to $\{0\}$ being radical.

Radical ideals in $\mathbb Z$

Lemma

The ideal (n) is radical if and only if n is square-free – that is, n has no repeated prime factors.

Proof.

We have that $a \in \sqrt{(n)}$ if and only if *n* divides a^k for some *k*, if and only if *a* contains all the prime factors of *n*.

For (n) to be radical, this needs to be equivalent to *a* dividing *n*, i.e., every prime factor of *n* occuring exactly once.