MAS439 Lecture 8 Maximal, Prime, Radical

October 129h

Last session we defined quotient rings, and proved the universal property of quotient rings and the isomorphism theorems.

Now we ask the following question: what conditions on I make R / I nice? Specifically, when is R / I a field/integral domain/reduced?

Tomorrow we will introduce the notion of algebras.
R / I is a field $\Longleftrightarrow I$ is maximal R / I is a domain $\Longleftrightarrow I$ is prime R / I is a reduced $\Longleftrightarrow I$ is radical

An observation about fields

Lemma
A ring R is a field if and only if the only ideals are $\{0\}$ and R.
Proof.
Suppose R a field, and $I \neq\{0\}$ an ideal. We must show $I=R$.

- $\exists 0 \neq r \in I$.
- Since R a field, $\exists s \in R$ s.t. $r s=1$.
- Since $/$ ideal, $r \in I$, we have $1=s \cdot r \in I$
- But then $I=R$

Lemma

A ring R is a field if and only if the only ideals are $\{0\}$ and R.
Proof.
Suppose the only ideals of R are $\{0\}$ and R, and let $0 \neq r \in R$.
We must show r is a unit.
Consider (r), the ideal generated by r.

- Since $r \in(r),(r) \neq\{0\}$.
- Hence $(r)=R$.
- Hence $1 \in(r)$
- So $1=r \cdot s$

Maps out of fields are injective ${ }^{1}$

Lemma

Let R be a field, and $\varphi: R \rightarrow S$ a homomorphism. Then either

1. φ is injective
2. S is the trivial ring

Proof.

We have $\operatorname{ker}(\varphi)$ is either $\{0\}$, in which case φ is injective, or $\operatorname{ker}(\varphi)=R$, in which case $1_{s}=0_{s}$.

[^0]
Now we can prove what we wanted

By the second isomorphism theorem, ideals in R / I are of the form J / I, with $I \subset J \subset R$ an ideal.

Definition
A proper ideal I is maximal if there are no ideals J with $I \subsetneq J \subsetneq R$ Lemma
Let R / I is a maximal ideal if and only if R / I is a field.
Note: maximal ideals are often written \mathfrak{m} (\backslash mathfrak $\{m\}$)

Maximal ideals of \mathbb{Z}

- Ideals of \mathbb{Z} are of the form (n).
- $(n) \subset(m)$ if and only if m divides n
- So (n) is maximal if and only if the element n is prime Indeed, we have seen $\mathbb{Z} / n \mathbb{Z}$ is a field if and only if n is prime.

Maximal ideals always exist

Lemma

Let $r \in R$ not be a unit. Then r is contained in some maximal ideal $\mathfrak{m} \subset$ l

Proof.
Consider the set of all proper ideals of R that contain r, ordered under inclusion. Suppose

$$
r \in I_{1} \subset I_{2} \subset \cdots I_{n} \subset \cdots
$$

is a chain of ideals. Then we can see $U I_{n}$ is a proper ideal containing r. We now apply Zorn's lemma.
R / I is a field $\Longleftrightarrow I$ is maximal R / I is a domain $\Longleftrightarrow I$ is prime R / I is a reduced $\Longleftrightarrow I$ is radical

Once you define prime ideals, it's obvious

Definition

An ideal $I \subset R$ is prime if $a b \in I$ implies $a \in I$ or $b \in I$

Lemma

An ideal I is prime if and only if R / I is an integral domain.
Proof.
For $a \in R$, let [a] denote the image of a in R / I.
Then $a \in I \Longleftrightarrow[a]=0$. And $a \cdot b \in I \Longleftrightarrow[a] \cdot[b]=0$.
So the definition of I being prime is exactly equivalent to R / I being an integral domain.

Two little comments

1. Note that R being an integral domain is equivalent to $\{0\} \subset R$ being a prime ideal.
2. Sometimes you'll see a prime ideal denote \mathfrak{p}, (i.e., \mathfrak\{p\}), but it's a bit old-school now, in contrast to \mathfrak{m} for a maximal ideal, which is still commonplace

Example: Prime ideals in \mathbb{Z}

Remember all ideals in \mathbb{Z} are principal, hence of the form (n).
An element $m \in \mathbb{Z} \in(n)$ if and only if $m=a n$.
That is, if and only if n divides m.
So asking (n) to be prime is asking for $n|a b \Longrightarrow n| a$ or $n \mid b$. That is, asking for n to be prime.

Wait! In \mathbb{Z} nearly all prime ideals are maximal?

Note that since all fields are integral domains, we have that all maximal ideals are prime.

In \mathbb{Z}, the converse is nearly true - the maximal ideals are the ideals (p), with p prime; the prime ideals in \mathbb{Z} are (p) and (0).

Essentially the same proof holds true in any principal ideal domain...
R / I is a field $\Longleftrightarrow I$ is maximal R / I is a domain $\Longleftrightarrow I$ is prime R / I is a reduced $\Longleftrightarrow I$ is radical

Some pun about radical ideals

Recall that if I is an ideal, the radical of I was

$$
\sqrt{I}=\left\{a: a^{n} \in I \text { for some } a\right\}
$$

Definition
We call an ideal radical if $I=\sqrt{I}$. That is, I is radical if and only if $a^{n} \in I \Longrightarrow a \in I$.

Lemma
I is radical if and only if \sqrt{I} is reduced
Note: R / I being reduced is equivalent to $\{0\}$ being radical.

Radical ideals in \mathbb{Z}

Lemma

The ideal (n) is radical if and only if n is square-free - that is, n has no repeated prime factors.

Proof.

We have that $a \in \sqrt{(n)}$ if and only if n divides a^{k} for some k, if and only if a contains all the prime factors of n.

For (n) to be radical, this needs to be equivalent to a dividing n, i.e., every prime factor of n occuring exactly once.

[^0]: ${ }^{1}$ Terms and conditions may apply

