
Contents

1 Introduction 1

1.1 A first look at graphs 1
1.2 Degree and handshaking 6
1.3 Graph Isomorphisms. 9
1.4 Instant Insanity 11
1.5 Trees . 15
1.6 Exercises . 19

2 Walks 22

2.1 Walks: the basics 22
2.2 Eulerian Walks. 25
2.3 Hamiltonian cycles 31
2.4 Exercises . 34

3 Algorithms 36

3.1 Prüfer Codes 36
3.2 Minimum Weight Spanning Trees 38
3.3 Digraphs . 43
3.4 Dijkstra’s Algorithm for Shortest Paths 44
3.5 Algorithm for Longest Paths 49
3.6 The Traveling Salesperson Problem 50
3.7 Exercises . 53

4 Graphs on Surfaces 57

4.1 Introduction to Graphs on Surfaces 57
4.2 The planarity algorithm for Hamiltonian graphs. 61
4.3 Kuratowski’s Theorem 66
4.4 Drawing Graphs on Other surfaces 70
4.5 Euler’s Theorem 75
4.6 Exercises . 79

5 Colourings 81

5.1 Chromatic number 81
5.2 Chromatic index and applications 83
5.3 Introduction to the chromatic polynomial 87
5.4 Chromatic Polynomial continued 91

i

CONTENTS ii

5.5 Exercises . 94

Chapter 1

Introduction

The first chapter is an introduction, including the formal definition of a graph
and many terms we will use throughout. More importantly, however, are
examples of these concepts and how you should think about them. As a first
nontrivial use of graph theory, we explain how to solve the "Instant Insanity"
puzzle.

1.1 A first look at graphs

1.1.1 The idea of a graph
First and foremost, you should think of a graph as a certain type of picture,
containing dots and lines connecting those dots, like so:

A

B

C

D
E

Figure 1.1.1 A graph
We will typically use the letters G,H, or Γ (capital Gamma) to denote

a graph. The “dots” or the graph are called vertices or nodes, and the lines
between the dots are called edges. Graphs occur frequently in the “real world”,
and typically how to show how something is connected, with the vertices
representing the things and the edges showing connections.

• Transit networks: The London tube map is a graph, with the vertices
representing the stations, and an edge between two stations if the tube

1

CHAPTER 1. INTRODUCTION 2

goes directly between them. More generally, rail maps in general are
graphs, with vertices stations and edges representing line, and road maps
as well, with vertices being cities, and edges being roads.

• Social networks: The typical example would be Facebook, with the
vertices being people, and edge between two people if they are friends on
Facebook.

• Molecules in Chemistry: In organic chemistry, molecules are made up of
different atoms, and are often represented as a graph, with the atoms
being vertices, and edges representing covalent bonds between the vertices.

Figure 1.1.2 A Caffeine Molecule, courtesey Wikimedia Commons
That is all rather informal, though, and to do mathematics we need very precise,
formal definitions. We now provide that.

1.1.2 The formal definition of a graph
The formal definition of a graph that we will use is the following:

Definition 1.1.3 A graph G consists of a set V (G), called the vertices of G,
and a set E(G), called the edges of G, of the two element subsets of V (G) ♦

Example 1.1.4 Consider the water molecule, which consists of a single oxygen
atom, connected to two hydrogen atoms. It has three vertices, and so V (G) =
{O,H1, H2}, and two edges E(G) =

{
{O,H1}, {O,H2}

}
�

This formal definition has some perhaps unintended consequences about
what a graph is. Because we have identified edges with the two things they
connect, and have a set of edges, we can’t have more than one edge between any
two vertices. In many real world examples, this is not the case: for example, on
the London Tube, the Circle, District and Picadilly lines all connect Gloucester
Road with South Kensington, and so there should be multiple edges between
those two vertices on the graph. As another example, in organic chemistry,
there are often "double bonds", instead of just one.

Another consequence is that we require each edge to be a two element subset
of V (G), and so we do not allow for the possibility of an edge between a vertex

https://commons.wikimedia.org/wiki/File:Caffeine_molecule.png

CHAPTER 1. INTRODUCTION 3

and itself, often called a loop.
Graphs without multiple edges or loops are sometimes called simple graphs.

We will sometimes deal with graphs with multiple edges or loops, and will try
to be explicit when we allow this. Our default assumption is that our graphs
are simple.

Another consequence of the definition is that edges are symmetric, and work
equally well in both directions. This is not always the case: in road systems,
there are often one-way streets. If we were to model Twitter or Instragram as a
graph, rather than the symmetric notion of friends we would have to work with
“following”. To capture these, we have the notion of a directed graph, where
rather than just lines, we think of the edges as arrows, pointing from one vertex
(the source) to another vertex (the target). To model Twitter or Instagram, we
would have an ege from vertex a to vertex b if a followed b.

1.1.3 Basic examples and concepts
Several simple graphs that are frequently referenced have specific names.
Definition 1.1.5 The complete graph Kn is the graph on n vertices, with an
edge between any two distinct vertices. ♦

Definition 1.1.6 The empty graph En is the graph on n vertices, with no
edges. ♦

Definition 1.1.7 The path graph Pn is the graph on n vertices {v1, . . . , vn}
with edges {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}. ♦

Definition 1.1.8 The cycle graph Cn is the graph on n vertices {v1, . . . , vn}
with edges {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}. ♦

K5 E5 P5 C5

Figure 1.1.9 Basic graphs

Definition 1.1.10 The complelement of a simple graph G, which we will denote
Gc, and is sometimes written G, is the graph with the same vertex set as G, but
{v, w} ∈ E(Gc) if and only if {v, w} /∈ E(G); that is, there is an edge between
v and w in Gc if and only if there is not an edge between v and w in G ♦

Example 1.1.11 The empty graph and complete graph are complements of
each other; Kc

n = En

The path graph P4 and its complement are shown below:

CHAPTER 1. INTRODUCTION 4

P4 P c
4

�
It commonly occurs that there are two different types of vertices, and the

edges only go between vertices of the two types. For example, we may be
modelling a company, and one type of vertices may represent the employees,
and another type of vertices could represent the different jobs that need done,
with an edge between a worker and a job if the worker is qualified to do that
particular job. We call these graphs bipartite.
Definition 1.1.12 A graph G is bipartite if its vertices can be coloured red
and blue so that every edge goes between a red vertex and a blue vertex. ♦

Example 1.1.13 The graph below is bipartite.

�
As another example, note that the cycle graph C4 is bipartite -- we can

colour vertices 1 and 3 red, and vertices 2 and 4 blue. But the cycle graph C3 is
not bipartite: as the two colours are interchangable, we can assume we coloured
vertex 1 red; then since it is adjacent to both 2 and 3, those vertices must both
be blue, but they’re adjacent to each other, which violates the definition of
bipartite. More generally, we have:
Lemma 1.1.14 The cycle graph Cn is bipartite if and only if n is even.
Proof. Let’s try to colour the vertices of Cn red and blue so that adjacent
vertices have different colour. Without loss of generality, we may assume that
v1 is coloured blue. Then since it is adjacent to v1, v2 must be coloured red.
Continuing in this way, we see that vk is blue for odd k and red for even k. But
vn is adjacent to v1, and so these will have different colours precisely when n is
even. �

Lemma 1.1.15 A graph G is bipartite if and only if G has no subgraphs that
are isomorphic to C2k+1

CHAPTER 1. INTRODUCTION 5

Proof. First, note that if G2 is a subgraph of G1, and G1 is bipartite, then
so is G2: colouring the vertices of G1 red and blue in particular colours the
vertices of G2 as well. Hence, we see if that G has a subgraph isomorphic to
C2k1 , which isn’t bipartite by the previous lemma, then G1 can’t be bipartite,
either.

In the other direction, we assume that G has no subgraphs isomorphic to
C2k+1; we need to prove that G is bipartite. Again, let’s try to colour the
vertices of G red and blue so that adjancent vertices have different colours.
Choose a vertex v of G, without loss of generality we may assume that v is
coloured blue; then all vertices adjacent to v -- i.e., those vertices at distance 1
from v -- are coloured red. The vertices adjacent to those must be blue, and
the ones adjacent to those must be red, alternating out. This suggests trying
to colour all vertices at odd distance from v red, and those vertices at even
distance from v blue. We will show that if this colouring has two vertices of
the same colour that are adjacent, then G has an odd cycle.

Assume that u and w are two vertices coloured red that are adjacent. Since u
is red, the distance from v to u is odd -- there is a path v = v0−v1−· · ·−v2k+1 =
u. Similarly, there is an odd length path from v to w: v = w0−w1−· · ·−w2`+1 =
w. Taking the union of these two subgraphs and the edge connecting u and w,
we get a closed walk consisting of (2k + 1) + (2`+ 1) + 1 = 2k + 2`+ 3 edges,
which is odd. This walk may repeat some vertices and edges, but if it does we
can split it into two smaller walks, one of which must have odd length, and
eventually we must get a closed walk of odd length that doesn’t repeat any
vertices.

The case that u and w are both coloured blue is completely analogous,
except we will be merging two paths with an even number of edges and one
extra edge to get a path with odd length. �

A special type of bipartite graph is the complete bipartite graphs Km,n,
which are the simple graphs that have as many edges as possible while still
being bipartite.
Definition 1.1.16 The complete bipartite graph Km,n is the graph with m red
vertices and n blue vertices, and an edge between very red vertex and every
blue vertex. ♦

Example 1.1.17 The complete bipartite graph K2,2 is isomorphic to C4.
The graphs K1,3 and K4,4 are drawn below.

CHAPTER 1. INTRODUCTION 6

K1,3 K4,4
�

1.2 Degree and handshaking

1.2.1 Definition of degree
Intuitively, the degree of a vertex is the “number of edges coming out of it”. If
we think of a graph G as a picture, then to find the degree of a vertex v ∈ V (G)
we draw a very small circle around v, the number of times the G intersects that
circle is the degree of v. Formally, we have:

Definition 1.2.1 Let G be a simple graph, and let v ∈ V (G) be a vertex of G.
Then the degree of v, written d(v), is the number of edges e ∈ E(G) with v ∈ e.
Alternatively, d(v) is the number of vertices v is adjacent to. ♦

Example 1.2.2

Figure 1.2.3 The graph K
In the graph K shown in Figure 1.2.3, vertices a and b have degree 2, vertex

c has degree 3, and vertex d has degree 1. �

CHAPTER 1. INTRODUCTION 7

Note that in the definition we require G to be a simple graph. The notion
of degree has a few pitfalls to be careful of G has loops or multiple edges. We
still want to the degree d(v) to match the intuitive notion of the “number of
edges coming out of v” captured in the drawing with a small circle. The trap
to beware is that this notion no longer agrees with “the number of vertices
adjacent to v” or the “the number of edges incident to v”
Example 1.2.4
The graph G to the right has two ver-
tices, a and b, and three edges, two be-
tween a and b, and a loop at a. Vertex
a has degree 4, and vertex b has degree
2.

ab

�

1.2.2 Extended example: Chemistry
In organic chemistry, molecules are frequently drawn as graphs, with the vertices
being atoms, and an edge betwen two vertices if and only if the corresponding
atoms have a covalent bond between them (that is, they share a vertex).

Example 1.2.5 Alkanes. �
The location of an element on the periodic table determines the valency of

the element -- hence the degree that vertex has in any molecule containing that
graph:

• Hydrogen (H) and Fluorine (F) have degree 1

• Oxygen (O) and Sulfur (S) have degree 2

• Nitrogen (N) and Phosphorous (P) have degree 3

• Carbon (C) has degree 4
Usually, most of the atoms involved are carbon and hydrogen. Carbon atoms
are not labelled with a C, but just left blank, while hydrogen atoms are left off
completely. One can then complete the full structure of the molecule using the
valency of each vertex. On the exam, you may have to know that Carbon has
degree 4 and Hydrogen has degree 1; the valency of any other atom would be
provided to you

Graphs coming from organic chemistry do not have to be simple – sometimes
there are double bonds, where a pair of carbon atoms have two edges between
them.
Example 1.2.6 Saturated vs. unsaturated �

If we know the chemical formula of a molecule, then we know how many
vertices of each degree it has. For a general graph, this information is known
as the degree sequence
Definition 1.2.7 Degree sequence. The degree sequence of a graph is just
the list (with multiplicity) of the degrees of all the vertices. ♦

The following sage code draws a random graph with 7 vertices and 10 edges,
and then gives its degree sequence. You can tweak the code to generate graphs
with different number of vertices and edges, and run the code multiple times,
and the degree sequence should become clear.

vertices = 7
edges = 10
g = graphs.RandomGNM(vertices ,edges)

CHAPTER 1. INTRODUCTION 8

g.show()
print g.degree_sequence ()

Knowing the chemical composition of a molecule determines the degree
sequence of its corresponding graph. However, it is possible that the same set
of atoms may be put together into a molecule in more than one different ways.
In chemistry, these are called isomers. In terms of graphs, this corresponds to
different graphs that have the same degree sequence.

An important special case is the constant degree sequence.
Definition 1.2.8 Regular graphs. A graph Γ is d-regular, or regular of
degree d if every vertex v ∈ Γ has the same degree d, i.e. d(v) = d. ♦

As a common special case, a regular graph where every vertex has degree
three is called trivalent, or cubic.

Some quick examples:

1. The cycle graph Cn is two-regular

2. The complete graph Kn is (n− 1)-regular

3. The Petersen graph is trivalent

1.2.3 Handshaking lemma and first applications
To motivative the Handshaking Lemma, we consider the following question.
Suppose there seven people at a party. Is it possible that everyone at the party
knows exactly three other people?

We can model the situation a graph, with vertices being people at the party,
and an edge between two vertices if the corresponding people know each other.
The question is then asking for the existence of a graph with seven vertices so
that every vertex has degree three. It is then natural to attempt to solve the
problem by trying to draw such a graph. After a few foiled attempts, we begin
to suspect that it’s not possible, but doing a case-by-case elimination of all the
possibilities is daunting. It’s easier to find a reason why we can’t draw such a
graph.

We will do this as follows: suppose that everyone at the party who knows
each other shakes hands. How many handshakes will occur? On the one hand,
from the definitions this would just be the number of edges in the graph. On the
other hand, we can count the number of handshakes working person-by-person:
each person knows three other people, and so is involved in three handshakes.
But each handshake involves two people, and so if we count 7 ∗ 3 we’ve counted
each handhsake twice, and so there should be 7 ∗ 3/2 = 10.5 handshakes
happening, which makes no sense, as we can’t have half a handshake. Thus, we
have a contradiction, and we conclude such a party isn’t possible.

Euler’s handshaking Lemma is a generalization of the argument we just
made to an arbitrary graph.

Theorem 1.2.9 (Euler’s handshaking Lemma)∑
v∈V (G)

d(v) = 2|E(G)|

Proof. We count the “ends” of edges two different ways. On the one hand, every
end occurs at a vertex, and at vertex v there are d(v) ends, and so the total
number of ends is the sum on the left hand side. On the other hand, every edge
has exactly two ends, and so the number of ends is twice the number of edges,
giving the right hand side. �

CHAPTER 1. INTRODUCTION 9

We have seen already seen one use of Euler’s handshaking Lemma, but it
will be particularly useful in Chapter 3, when we study graphs on surfaces.

1.3 Graph Isomorphisms
Generally speaking in mathematics, we say that two objects are "isomorphic" if
they are "the same" in terms of whatever structure we happen to be studying.
The symmetric group S3 and the symmetry group of an equilateral triangle
D6 are isomorphic. In this section we briefly briefly discuss isomorphisms of
graphs.

1.3.1 Isomorphic graphs
The "same" graph can be drawn in the plane in multiple different ways. For
instance, the two graphs below are each the "cube graph", with vertices the 8
corners of a cube, and an edge between two vertices if they’re connected by an
edge of the cube:

Figure 1.3.1 Two drawings of the cube graph

Example 1.3.2 It is not hard to see that the two graphs above are both
drawings of the cube, but for more complicated graphs it can be quite difficult
at first glance to tell whether or not two graphs are the same. For instance, there
are many ways to draw the Petersen graph that aren’t immediately obvious to
be the same.

This animated gif created by Michael Sollami for this Quanta Magazine
article on the Graph Isomorphism problem illustrates many different such
drawings in a way that makes the isomorphisms apparent. �

Definition 1.3.3 An isomorphism ϕ : G → H of simple graphs is a biject
ϕ : V (G)→ V (H) between their vertex sets that preserves the number of edges
between vertices. In other words, ϕ(v) and ϕ(w) are adjacent in H if and only
if v and w are adjancent in G. ♦

Example 1.3.4

https://msollami.com/code/2014/12/24/graph-isomorphisms
https://www.quantamagazine.org/algorithm-solves-graph-isomorphism-in-record-time-20151214/
https://www.quantamagazine.org/algorithm-solves-graph-isomorphism-in-record-time-20151214/

CHAPTER 1. INTRODUCTION 10

Figure 1.3.5 C5 is isomorphic to its complement Cc
5

The cycle graph on 5 vertices, C5 is isomorphic to its complement, Cc
5. The

cycle C5 is usually drawn as a pentagon, and if we were then going to naively
draw Cc

5 we would draw a 5-sided star. However, we could draw Cc
5 differently

as shown, making it clear that it is isomorphic to C5, with isomorphism
ϕ : C5 → Cc

5 defined by ϕ(a) = a, ϕ(b) = c, ϕ(c) = e, ϕ(d) = b, ϕ(e) = d. �

Although solving the graph isomorphism problem for general graphs is quite
difficult, doing it for small graphs by hand is not too bad and is something you
must be able to do for the exam. If the two graphs are actually isomorphic,
then you should show this by exhibiting an isomrophism; that is, writing down
an explicit bijection between their vertex sets with the desired properties. The
most attractive way of doing this, for humans, is to label the vertices of both
copies with the same letter set.

If two graphs are not isomorphic, then you have to be able to prove that they
aren’t. Of course, one can do this by exhaustively describing the possibilities,
but usually it’s easier to do this by giving an obstruction – something that is
different between the two graphs. One easy example is that isomorphic graphs
have to have the same number of edges and vertices. We’ll discuss some others
in the next section

1.3.2 Heuristics for showing graphs are or aren’t isomor-
phic

Another, only slightly more advanced invariant is the degree sequence of a
graph that we saw last lecture in our discussion of chemistry.

If ϕ : G→ H is an isomorphism of graphs, than we must have d(ϕ(v)) = d(v)
for all vertices v ∈ G, and since isomorphisms are bijections on the vertex set,
we see the degree sequence must be preserved. However, just because two
graphs have the same degree sequences does not mean they are isomorphic.

Slightly subtler invariants are number and length of cycles and paths.

1.3.3 Cultural Literacy: The Graph Isomorphism Problem
This section, as all "Cultural Literacy" sections, is information that you may
find interesting, but won’t be examined.

The graph isomorphism problem is the following: given two graphs G and
H, determine whether or not G and H are isomorphic. Clearly, for any two
graphs G and H, the problem is solvable: if G and H both of n vertices, then
there are n! different bijections between their vertex sets. One could simply
examine each vertex bijection in turn, checking whether or not it maps edges
to edges.

The problem is interesting because the naive algorithm discussed above
is not very efficient: for large n, n! is absolutely huge, and so in general this

CHAPTER 1. INTRODUCTION 11

algorithm will take a long time. The question is, is there are a faster way to do
check? How fast can we get?

The isomorphism problem is of fundamental importance to theoretical
computer science. Apart from its practical applications, the exact difficulty of
the problem is unknown. Clearly, if the graphs are isomorphic, this fact can be
easily demonstrated and checked, which means the Graph Isomorphism is in
NP.

Most problems in NP are known either to be easy (solvable in polynomial
time, P), or at least as difficult as any other problem in NP (NP complete).
This is not true of the Graph Isomorphism problem. In November of last
year, Laszlo Babai announced a quasipolynomial-time algorithm for the graph
isomorphism problem – you can read about this work in this great popular
science article.

1.4 Instant Insanity
So far, our motivation for studying graph theory has largely been one of
philosophy and language. Before we get too much deeper, however, it may
be useful to present a nontrivial and perhaps unexpected application of graph
theory; an example where graph theory helps us to do something that would
be difficult or impossible to do without it.

1.4.1 A puzzle

Figure 1.4.1 Instant Insanity Package
There is a puazzle marketed under the name "Instant Insanity", one version

of which is shown above. The puzzle is sometimes called "the four cubes
problem", as it consists of four different cubes. Each face of each cube is painted
one of four different colours: blue, green, red or yellow. The goal of the puzzle
is to line the four cubes up in a row, so that along the four long edges (front,
top, back, bottom) each of the four colours appears eactly once.

Depending on how the cubes are coloured, this may be not be possible, or
there may be many such possibilities. In the original instant insanity, there is
exactly one solution (up to certain equivalences of cube positions). The point
of the cubes is that there are a large number of possible cube configurations,
and so if you just look for a solution without being extremely systematic, it is
highly unlikely you will find it.

But trying to be systematic and logical about the search directly is quite
difficult, perhaps because we have problems holding the picture of the cube in

CHAPTER 1. INTRODUCTION 12

our mind. In what follows, we will introduce a way to translate the instant
insanity puzzle into a question in graph theory. This is obviously in no way
necessary to solve the puzzle, but does make it much easier. It also demonstrates
the real power of graph theory as a visualization and thought aid.

There are many variations on Instant Insanity, discussions of which can be
found here and here. There’s also a commercial for the game.

1.4.2 Enter graph theory
It turns out that the important factor of the cubes is what color is on the
opposite side of each face. Suppose we want face one facing forward. Then we
have four different ways to rotate the cube to keep this the same. The same face
will always appear on the opposite side, but we can get any of the remaining
four faces to be on top, say.

Figure 1.4.2 An impossible set of cubes
Let us encode this information in a graph. The vertices of the graph will be

the four colors, B, G, R and Y. We will put an edge between two colors each
time they appear as opposite faces on a cube, and we will label that edge with
a number 1-4 denoting which cube the two opposite faces appear. Thus, in
the end the graph will have twelve edges, three with each label 1-4. For from
the first cube, there will be a loop at B, and edge between G and R, and an
edge between Y and R. The graph corresponding to the four cubes above is the
following:

http://www.cs.brandeis.edu/~storer/JimPuzzles/ZPAGES/zzzInstantInsanity.html
http://www.jaapsch.net/puzzles/insanity.htm
https://www.youtube.com/watch?v=CQ2gHSKZBEw

CHAPTER 1. INTRODUCTION 13

Figure 1.4.3 The graph constructed from the cubes in Figure 1.4.2

1.4.3 Proving that our cubes were impossible
We now analyze the graph to prove that this set of cubes is not possible.

Suppose we had an arrangement of the cubes that was a solution. Then,
from each cube, pick the edge representing the colors facing front and back on
that cube. These four edges are a subgraph of our original graph, with one edge
of each label, since we picked one edge from each cube. Furthermore, since we
assumed the arrangement of cubes was a solution of instant insanity, each color
appears once on the front face and once on the back. In terms of our subgraph,
this translates into asking that each vertex has degree two.

We can get another subgraph satisfying these two properties by looking at
the faces on the top and bottom for each cube and taking the corresponding
edges. Furthermore, these two subgraphs do not have any edges in common.

Thus, given a solution to the instant insanity problem, we found a pair of
subgraphs S1, S2 satisfying:

1. Each subgraph Si has one edge with each label 1,2,3,4

2. Every vertex of Si has degree 2

3. No edge of the original graph is used in both S1 and S2

As an exercise, one can check that given a pair of subgraphs satisfying 1-3, one
can produce a solution to the instant insanity puzzle.

Thus, to show the set of cubes we are currently examining does not have a
solution, we need to show that the graph does not have two subgraphs satisfying
properties 1-3.

To do, this, we catalog all graphs satisfying properties 1-2. If every vertex
has degree 2, either:

1. Every vertex has a loop

2. There is one vertex with a loop, and the rest are in a triangle

3. There are two vertices with loops and a double edge between the other
two vertices

CHAPTER 1. INTRODUCTION 14

4. There are two pairs of double edges

5. All the vertices live in one four cycle

6. A subgraphs of type 1 is not possible, because G and R do not have loops.

For subgraphs of type 2, the only triangle is G-R-Y, and B does have loops.
The edge between Y-G must be labeled 3, which means the loop at B must be
labeled 1. This means the edge between G and R must be labeled 4 and the
edge between Y and R must be 2, giving the following subgraph:

Figure 1.4.4 A subgraph for a solution for one pair of faces
For type 3, the only option is to have loops at B and Y and a double edge

between G and R. We see the loop at Y must be labeled 2, one of the edges
between G and R must be 4, and the loop at B and the other edge between G
and R can switch between 1 and 3, giving two possibilities:

Figure 1.4.5 Two more subgraphs for a partial solutions
For subgraphs of type 4, the only option would be to have a double edge

between B and G and another between Y and R; however, none of these edges
are labeled 3 and this option is not possible.

Finally, subgraphs of type 5 cannot happen because B is only adjacent to G
and to itself; to be in a four cycle it would have two be adjacent to two vertices
that aren’t itself.

This gives three different possibilities for the subgraphs SiSi that satisfy
properties 1 and 2. However, all three possibilities contain the the edge labeled
4 between G and R; hence we cannot choice two of them with disjoint edges,
and the instant insanity puzzle with these cubes does not have a solution.

1.4.4 Other cube sets
The methods above also give a way to find the solution to a set of instant
insanity cubes should one exist. I illustrate this in the following Youtube
video:

CHAPTER 1. INTRODUCTION 15

YouTube: https://www.youtube.com/watch?v=GsbhRfjaaN8

1.5 Trees
A very important class of graphs are trees -- they are connected, but just barely:
removing any edge causes them not to be connected.

1.5.1 Basics on trees

Figure 1.5.1 A forest consisting of three trees
The figure above shows some examples of the trees. Meanwhile, the cycle

graph Cn or the complete graph Kn with n ≥ 3 are not trees: we can remove
an edge from these graphs and they’d still be connected. The formal definition
of a tree is as follows:
Definition 1.5.2 Trees and Forests. A graph G is a tree if:

1. G is connected

2. G has no cycles

A not necessarily connected graph with no cycles is called a forest, so that a
forest is a union of trees. ♦

Informally, the condition that G is connected is asking that G have enough
edges, while the condition that G has no cycles is asking for G not to have too
many edges. Thus, trees are sort of "goldilocks" graphs -- they have enough
edges, but not too many -- they’re connected, but just barely.

The following Theorem gives many alternate characterisations of trees, and
makes more precise the intuition of trees as "goldilocks graphs".
Theorem 1.5.3 Let G be a graph with n vertices. The following are equivalent:

1. G is a tree.

2. Between any two vertices a, b ∈ V (G), there is a unique path.

3. G is connected, but removing any edge makes G disconnected.

4. G has no cycles, but adding any edges to G creates a cycle.

5. G is connected and has n− 1 edges

6. G has no cycles and has n− 1 edges

https://www.youtube.com/watch?v=GsbhRfjaaN8

CHAPTER 1. INTRODUCTION 16

We will not use most of , and will not prove that all options are equivalence.
We briefly proof that 1 is equivalent to 2 now, and in the next section we will
carefully prove that 1 is equivalent to 5, as we will use this fact a few times.
The rest make a good exercise to check your basic understanding.

To see that 1 and 2 are equivalent, note that being connected by definition
means there is a path between every two vertices. As a tree is a connected
graph without any cycles, to finish seeing 1 and 2 are equivalent is exactly
Lemma 1.5.5, whose main idea is contained in Figure 1.5.4

v w v w

Figure 1.5.4 Two different paths create a cycle

Lemma 1.5.5 A graph G has no cycles if and only if there is at most one path
between any two vertices of G.
Proof. If G has a cycle, the there are at least two paths between any vertex on
that cycle -- the paths going each way around the cycle. Thus, we just have to
show that if there there are two paths between between v and w, then G has a
cycle.

In the easy case, the two paths will contain no vertices in common except
for v and w, and so the union of the two paths will be a cycle. In general, the
paths will share other vertices and edges -- they may well repeat vertices and
edges themselves. But in any case, by considering some subset of these two
paths will be a cycle. �

1.5.2 Leaves
To prove Theorem , we first need to introduce the concept of leaves.
Definition 1.5.6 Leaf. A vertex v ∈ G is called a leaf if it has degree one,
i.e. if d(v) = 1 ♦

When looked at a drawn graph, this definition is fairly intuitive: real life
trees branch out and split in leaves, just like mathematical trees.
Lemma 1.5.7 Trees have leaves. Let T be a finite tree with at least two
vertices. Then T has at least two leaves.
Proof. By assumption, T has at least two vertices, say v0 and w0. Since T is a
tree it is connected, and so in particular there must be a path between v0 and
w0; let vi be the vertices in this path, and let ei be the edge in the path joining
vi−1 to vi.

Since vm is adjacent to em it has degree at least one; if it has degree 1 it is
a leaf, and we’ve found a leaf. If vm is not a leaf, then there must be another
edge coming out of it, say em+1 going to vm+1. Note that vm+1 cannot be
any of the vertices we’ve already found, as then we’d have more than one path
between two vertices and hence a loop, but T was a tree. Thus we can make
the path a bit longer.

We can now continue this argument inductively as long as the vertex at the
of the path has degree higher than 1. But since T is finite, and we never return
to a vertex we’ve already visited, we this process must eventually terminate,
but the only way this can happen is if the end vertex of the path has degree 1,
that is, if it’s a leaf.

A similar argument extending from v0, the other end of the path, shows

CHAPTER 1. INTRODUCTION 17

that we must eventually reach a different leaf from that end, and so T must
have at least two leaves, as desired. �

Now that we have a basic understanding of leaves, we are ready to prove
the following:
Lemma 1.5.8 A simple graph G with n vertices is a tree if and only if is
connected and has n− 1 edges.
Proof. Since being connected is half of the requirement of being a tree, we need
to show that a connected graph on n vertices is a tree if and only if it has n− 1
edges.

Let us first prove that a tree on n vertices has n − 1 edges. We will use
induction on n. As bases, there is only one tree with 1 vertex, and it does in
fact have 0 edges, and there is only one tree with two vertices, and it does in
fact have 1 edge. So for the inductive step, let us suppose that we know that all
trees with k < n vertices have k − 1 edges, and let T be a tree with n vertices.
By Lemma, we know that T has a leaf v, which by the definition of leaves is
connected to the rest of T by a single edge e. If we delete v and e from T, we
get a smaller graph T′ ince which has one less vertex and one less edge than T
did.

Since T was a tree, it follows that T′ is a tree, too -- check this yourself,
using the definition of a tree! Then, since T′ is a tree with n− 1 vertices, byt
the inductive hypothesis it follows that it has one less edge n− 2 edges, and so
T must have n− 1 edges, which is what we were trying to show.

Now we show the other direction: that if G is a simple connected graph
with n vertices and n− 1 edges, then G is a tree. The basic structure of the
proof is the same as the other direction: find a vertex v adjacent to a single
edge e, and delete v and e to get a smaller tree, where we can assume the
proposition holds, and then use induction.

To play the role of the lemma that every tree has a leaf, we will establish
the following statement: if G is a connected graph with n vertices and n− 1
edges, then /p>G has a vertex of degree 1. Note that since G is connected, it
can’t have any vertices of degree 0, and so to prove it has a vertex of degree 1
it is enough to show that it has a vertex of degree strictly less than 2. Thus, for
contradiction assume that every vertex v of G has degree d(v) ≥ 2. But then
the handshaking lemma would say:

2(n− 1) = 2e =
∑

d(v) ≥
∑

2 = 2n

a contradiction, and hence G must have a vertex of degree 1, as desired. �

1.5.3 Trees in Chemistry
Our brief study of trees has the following consequence for chemistry: whether
or not a molecule is a tree is determined just by its chemical formula, and not
how it’s put together. Equivalently, if one isomer of a molecule is a tree, then
all isomers of the molecule are.

The argument runs as follows. Knowing the chemical formula of a molecule
means we know the degree sequence of the corresonding graphs. Molecules are
by definition connected graphs, so to be a tree it is enough to show that the
graph has one less edge than the number of vertices. But we can compute the
number of edges from the degree sequence by using the Handshaking Lemma.
Example 1.5.9 Alkanes are trees. Any molecule with formula CnH2n+2 is
an alkane. Although in general alkanes can have multiple isomers, every isomer
of an Alkane will always be a tree, as we now show.

CHAPTER 1. INTRODUCTION 18

To show a graph is a tree, it suffices to show that it is connected and that
the number of edges is one less than the number of vertices. Since Alkanes are
molecules, we know that the graph is connected. Furthermore, CnH2n+2 has
n carbons adn 2n + 2 hydrogens, and hence has 3n + 2 vertices. Thus, it is
enough to show that any molecule with formula CnH2n+2 has 3n+ 1 edges.

To do this, we use the handshaking lemma: 2e =
∑
d(v). Each of the n

carbons has degree 4, so the carbons contribute 4n to the total degree, and
each hydrogen of the 2n+ 2 has degree 1 and so only contributes 1 to the sum
of degrees. Hence, twice the number of edges is equal to 4n+ (2n+ 2) = 6n+ 2,
and so there are 3n+ 1 edges, as desired. �

As an early application of graph theory, Cayley used these ideas to count
the number of isomers of Alkanes (with some mistakes). In general, you can
count isomers of any molecule by counting isomorphism classes of graphs with
given degree sequences, but it can help organize the search to know, e.g., that
they’re all trees. To make sure we don’t miss or double count any, it’s useful
to organize the enumeration according to some principle; for Alkanes one way
is to organize according to the longest path of carbons, another is to restrict
degree sequences to just how the carbons have connected to other carbons.
Example 1.5.10 Counting isomers of C6H14. We illustrate these both of
these methods. We first illustrate by length of the longest path of carbons.

• Chain length six: Since we’ve used all carbons then there are no more
choices, and there is only one such isomer.

• Chain length five: We need to add one more carbon. We can’t add it
to either of the end carbons, because then we’d have a path of length 6.
We can add it to the central of the two chains, or alternatively to one
either side of central -- the last two trees are isomorphic, giving us two
possibilities

• Chain length four: We need to add two more carbons. Again, they can’t
be added to either of the end carbons, or we’d have a longer chain length.
Therefore, they most be added to the two central carbons. One case is
that we add one carbon to each of the two central carbons. Alternatively,
we could add both the carbons to the same "central" carbon reversing the
order of the chain is a symmetry that interchanges the two central atoms.
We could add each carbon directly to the existing carbon in the chain,
or we could add them one after the other making a chain of length two.
However, the resulting graph would have a chain of length 5 and already
be counted. Thus, there are two possibilities here.

• Chain length three: We need at add three more carbons, and there’s only
one central carbon to attach them to. We can’t add them all directly to
this central carbon, as that would create a carbon of degree 5. On the
other hand, once we add a chain of length longer than one to this central
carbon we’d have a path of length 4 or greater.

Thus, we see there are five isomers of C6H14. Alternatively, we could organize
our search by deleting the hydrogens, and then considering the degrees of the
resulting carbon-carbon graph.

• Degree at most two: If the resulting tree only had carbons of degree at
most two, then it would have to be the path graph P6, and so we only
have one possibility here.

• One vertex of degree three: If the resulting graph had exactly one carbon
of degree three, that vertex and its three neighbours would account for 4

CHAPTER 1. INTRODUCTION 19

of our 6 carbons, and so we’d have to add two more. We couldn’t add
them directly to the same vertex, as that would create a second vertex
of degree three. So, they could either be added as a chain of length two
to one of the leaves of the existing graph, or they could be added to two
separate leaves. Drawing these graphs we see they’re not isomorphic, and
so we have two possibilities here.

• Two vertices of degree three: If we have two vertices of degree three, one
sees they’d have to be adjacent to each other, resulting in one possibity.

• Vertex of degree four: A vertex of degree 4 and its four neighbours would
account for all but one of the carbons. We could add that carbon to any
of the leaves, and get one more possiblity.

C C C C C C

C C C C C
C

C C C C C
C

C C C C
C C

C C C C
C

C
Figure 1.5.11 Isomers of C6H12

Since carbons only have degree 4, the tree with six vertices where all are
connected to a central vertex isn’t allowed, and we have found all the isomers.

�

1.6 Exercises
1. For each of the following sequences, either give an example of such a graph,

or explain why one does not exist.
(a) A graph with six vertices whose degree sequence is [5, 5, 4, 3, 2, 2]

(b) A graph with six vertices whose degree sequence is [5, 5, 4, 3, 3, 2]

(c) A graph with six vertices whose degree sequence is [5, 5, 5, 5, 3, 3]

(d) A simple graph with six vertices whose degree sequence is [5, 5, 5, 5, 3, 3]
2. For the next Olympic Winter Games, the organizers wish to expand the

number of teams competing in curling. They wish to have 14 teams enter,
divided into two pools of seven teams each. Right now, they’re thinking of
requiring that in preliminary play each team will play seven games against
distinct opponents. Five of the opponents will come from their own pool
and two of the opponents will come from the other pool. They’re having
trouble setting up such a schedule, so they’ve come to you. By using an
appropriate graph-theoretic model, either argue that they cannot use their
current plan or devise a way for them to do so.

CHAPTER 1. INTRODUCTION 20

3. Figure 1.6.1 contains four graphs on six vertices. Determine which (if any)
pairs of graphs are isomorphic. For pairs that are isomorphic, give an
isomorphism between the two graphs. For pairs that are not isomorphic,
explain why.

Figure 1.6.1 Are these graphs isomorphic?
4. Let G be a simple graph with n vertices and degree sequence a1, a2, . . . , an.

What’s the degree sequence of its complement Gc?
5. Let G be the graph with graph with vertices consisting of the 10 three

element subsets of {a, b, c, d, e}, and two vertices adjacent if they share
exactly one element. So, for example, the two vertices v = {a, c, e} and
w = {b, c, d} are adjacent, but neither v or w is adjacent to u = {a, b, c}.

Draw G in a way that shows it is isomorphic to the Petersen graph.
Now let H be the graph with vertices consisting of the 10 two element

subsets of {a, b, c, d, e}, and two vertices adjacent if they share no elements.
Without drawing H, write down an isomorphism between G and H. Hint:
There’s a "natural" bijection between the two and three element subsets of
{a, b, c, d, e}

6. Recall thatGc denotes the complement of a graphG. Prove that f : G→ H
is an isomorphism of graphs if and only if f : Gc → Hc is an isomorphism.

7. Determine the number of non-isomorphic simple graphs with seven vertices
such that each vertex has degree at least five.
Hint. Consider the previous exercise

8. Consider the standard Instant Insanity puzzle, with four cubes and four
colours. Explain why one would expect there to be 331,776 different cube
configurations. Further explain why there would be fewer configurations if
any cubes are coloured with symmetries.

In the text, we solve the puzzle by finding certain pairs of subgraphs.
Assuming that none of the cubes are coloured symmetrically, explain why
each pair of subgraphs corresponds to at least 8 different cube configurations
that are actually solutions, and why, depending on the isomorphism type
of the subgraphs found, there may be more solutions.

9. Variations of the Insant Insanity puzzle increase the number of cubes and
the number of colours. Explain how to modify our graph theoretic solution
to solve the puzzle when we have n cubes, each face of which is coloured
one of n colours, and we want to line up the cubes so that each of the
top, bottom, front and rear strings of cubes displays each of the n colours
exactly once.

CHAPTER 1. INTRODUCTION 21

10. Use the method from the previous question to solve the following set of
six cubes, marketed under the name "Drive ya crazy", where each face is
coloured either blue, cyan, green, orange, red, or yellow.

C

G
B

R
Y

O

Cube 1
B
G
Y
O

R C

Cube 2
O
R
C
B

G Y

Cube 3

R
C
B
G

Y O

Cube 4
G
Y
O
R

C B

Cube 5
Y
O
R
C

B G

Cube 6
Figure 1.6.2 The six cubes from "Drive Ya crazy"

Chapter 2

Walks

In this chapter we investigate walks in graphs. We first look at some basic
definitions and examples, we discuss Dijkstra’s algorithm for finding the shortest
path between two points in a weighted graph, and we discuss the notions of
Eulerian and Hamiltonian graphs.

2.1 Walks: the basics
If the edges in a graph Γ represent connections between different cities, it is
obvious to strart planning longer trips that compose several of these connections.
The notion of a walk formally captures this definition; the formal notions of path
and trail further ask that we not double back on ourselves or repeat ourselves
in certain formally defined ways.

Once we’ve done that, we investigate what it means for a graph to be
connected or disconnected.

2.1.1 Walks and connectedness
Before we see the formal definition of a walk, it will be useful to see an example:

22

CHAPTER 2. WALKS 23

A

B

C

D

E

F

6

4

5

3

8

3

1

7

9

10

Figure 2.1.1 Example of a walk
In the graph shown, the vertices are labelled with letters, and the edges

are labelled with numbers, and we have a walk highlighted in red, and with
arrowtips drawn on the edges. Starting from vertex A, we can take edge 6
to vertex D, and then edge 5 to vertex C, edge 5 to vertext F , edge 3 back
to vertex D, and finally edge 8 to vertex E. Intuitively,then, a walk strings
together several edges that share vertices in between. Makign that formal, we
have the following.
Definition 2.1.2 Walk. walk in a graph Γ is a sequence

v0, e1, v1, e2, v2, . . . , vn−1, en, vn

where the vi are vertices, the ej are edges, and the edge ej goes between vertices
vj−1 and vj .

We say that the walk is between vertices a = v0 and b = vn ♦
With this notation for a walk, Example Figure 2.1.1, the walk shown would

be written A, 6, D, 4, C, 5, F, 3, D, 8, E. The visual representation of the walk
on the graph is vastly more intuitive, the written one feeling cumbersome in
comparison.

The definition of walk above contains some extra information. If we just
know the sequence of edges we can reconstruct what the vertices have to be
(assuming we have at least two edges in the walk). Alternatively, if the graph Γ
does not have multiple edges, it is enough to just know the vertices vi, but if Γ
has multiple edges that just knowing the vertices does not determine the walk.
Definition 2.1.3 Connected. We say a graph Γ is connected if for any two
vertices v, w, there is a walk from v to w in Γ. ♦

Definition 2.1.4 Disjoint union. Given two graphs Γ1 and Γ2, the disjoint
union Γ1 t Γ2 is obtained by taking the disjoint union of both the vertices and
edges of Γ1 and Γ2. So Γ1 t Γ2 consists of a copy of Γ1 and a copy of Γ2, with
no edges in between the two graphs. ♦

CHAPTER 2. WALKS 24

Definition 2.1.5 Disconnected. A graph Γ is disconnected if we can write
Γ = Γ1 t Γ2 for two proper (i.e., not all of Γ) subgraphs Γ1 and Γ2. ♦

We now have a definition for what it means for a graph to be connected,
and another for what it means for a graph to be disconnected. From everday
usage of this words, we would certainly hope that a graph is disconnected if
and only if it is not connected. However, it is not immediately clear from the
definitions as written that this is the case.
Lemma 2.1.6 The following are equivalent:

1. . Γ is connected

2. Γ is not disconnected
Proof. 1 implies 2: Supppose that Γ is connected, and let v, w ∈ V (Γ); we want
to show that there is a walk from v to w.

Define S ⊂ V (Γ) to be the set of all vertices u ∈ V (Γ) so that there is a
walk from v to u; we want to show that w ∈ S.

First, observe that there are no edges from S to V (Γ) \ S. Suppose that e
was an edge between a ∈ S and b ∈ Γ \ S. Since a ∈ S, by the definition of S
there is a walk v = v0v1v2 · · · vm = a from v to a. We can add the edge e to
the end of the walk, to get a walk from v to b, and hence by definition b ∈ S.

Now suppose that w /∈ S. Then S and V (Γ) \ S are both nonempty, and
by the above there are no edges between them, and so Γ is not connected, a
contradiction.

To prove 2 implies 1, we prove the contrapositive. If Γ is not connected,
then there are two vertices v, w ∈ V (Γ) so that there is no walk from v to w.

Suppose that Γ = Γ1 t Γ2, and pick v ∈ V (Γ1), w ∈ V (Γ2). Any walk from
v to w starts in V (Γ1) and ends in V (Γ2), and so at some point there must be
an edge from a vertex in Γ1 to a vertex in Γ2, but there are no such edges � �

2.1.2 Types of Walks
Many questions in graph theory ask whether or not a walk of a certain type
exists on a graph: we introduce some notation that will be needed for these
questions.
Definition 2.1.7 We say a walk is closed if it starts and ends on the same
vertex; i.e., v0 = vn. The length of a walk is n, the number of edges in it. The
distance between two vertices v and w is the length of the shortest walk from v
to w, if one exists, and ∞ if one does not exist. ♦

It is sometimes convenient to have terminology for walks that don’t backtrack
on themselves:
Definition 2.1.8

1. If the edges ei of the walk are all distinct, we call it a trail

2. If the vertices vi of the walk are all distinct (except possibly v0 = vm),
we call the walk a path. The exception is to allow for the possibility of
closed paths.

♦

Lemma 2.1.9 Let v, w ∈ V (Γ). The following are equivalent:
1. There is a walk from v to w

2. There is a trail from v to w

3. There is a path from v to w.

CHAPTER 2. WALKS 25

As is often the case, the formal write-up of the proof makes something that
can seem very easy intuitively look laborious, so it’s worth anlysing it briefly
for our example walk A−D − C − F −D − E from Figure 2.1.1. This walk
is not a path as it repeats the vertex D; however, we may simply remove the
triangle D − C − F −D from the walk to get the trail A−D −E. this idea is
what works in general.
Proof. It is immediate from the definitions that 3 implies 2 which implies 1, as
any path is a trail, and any trail is a walk.

That 1 implies 3 is intuitively obvious: if you repeat a vertex, then you’ve
visited someplace twice, and weren’t taking the shortest route. Let’s make this
argument mathematically precise.

Suppose we have a walk v = v0, e1, . . . , em, vm = w that is not a path. Then,
we must repeat some vertex, say vi = vk, with i < k. Then we can cut out all
the vertices and edges between vi and vk to obtain a new walk

v = v0, e1, v1, . . . , ei, vi = vk, ek+1, vk+1, ek+2, vk+2, . . . , vm

Since i < k, the new walk is strictly shorter than our original walk. Since the
length of a walk is finite, if we iterate this process the result must eventually
terminate. That means all our vertices are distinct, and hence is a path. �

2.2 Eulerian Walks
In this section we introduce the problem of Eulerian walks, often hailed as the
origins of graph theroy. We will see that determining whether or not a walk
has an Eulerian circuit will turn out to be easy; in contrast, the problem of
determining whether or not one has a Hamiltonian walk, which seems very
similar, will turn out to be very difficult.

2.2.1 The bridges of Konigsburg
The city of Konigsberg (now Kaliningrad) was built on two sides of a river,
near the site of two large islands. The four sectors of the city were connected
by seven bridges, as follows (picture from Wikipedia):

Figure 2.2.1 The city of Konigsburg in Euler’s time

CHAPTER 2. WALKS 26

A group of friends enjoyed strolling through the city, and created a game:
could they take a walk in the city, crossing every bridge exactly once, and return
to where they started from? They couldn’t find such a walk, but they couldn’t
prove such a walk wasn’t possible, and so they wrote to the mathematician
Euler, who proved that such a walk is not possible.

2.2.2 Eulerian Walks: definitions
We will formalize the problem presented by the citizens of Konigsburg in graph
theory, which will immediately present an obvious generalization.

We may represent the city of Konigsburg as a graph ΓK ; the four sectors of
town will be the vertices of ΓK , and edges between vertices will represent the
bridges (hence, this will not be a simple graph).

Then, the question reduces to finding a closed walk in the graph that will
uses every edge exactly once. In particular, this walk will not use any edge
more than once and hence will be a trail.
Checkpoint 2.2.2
Definition 2.2.3 Let G be a graph. An Eulerian cycle is a closed walk that
uses every edge of G exactly once.

If G has an Eulerian cycle, we say that G is Eulerian.
If we weaken the requirement, and do not require the walk to be closed,

we call it an Euler path, and if a graph G has an Eulerian path but not an
Eulerian cycle, we say G is semi-Eulerian ♦

The question of the walkers of Konigsburg is then equivalent to asking if
the graph ΓK is Eulerian. The birth of graph theory is usually marked to the
following theorem, proven by Euler:
Theorem 2.2.4 A connected graph Γ is Eulerian if and only if every vertex of
Γ has even degree

2.2.3 A digression on proofs, formality, and intuition
Before discussing the proof of Theorem 2.2.4, it’s worth a little meta-discussion
about proofs, intuition vs. rigor, and mathematics as a whole. The proofing
Theorem 2.2.4 is a common exam question, and you may not be used to studying
for reproducing proofs on exams. Certainly one way to prepare for such a
question is to memorize the proof word for word. There doesn’t seem to be a
lot of obvious value in this approach, however. So why ask these questions on
the exam? And this opens the door to more philosophical questions as well:
how should we think/interact with proofs anyway? What’s the point of it all?

Usually in books or in lectures, proofs are only given in slick, elegant,
polished formal versions. There are many reasons for this: there’s a certain
beauty to it; it’s important to write it out formally to make sure it’s all correct;
there’s only so much time in lectures, and brevity is a virtue anyway. People
turn away from long works, and the main point of a proof, after all, is to prove
something, and it’s easier to check that it’s all correct if it’s shorter.

But there’s a very real downside to this presentation of proofs as the finished,
elegant thing. Most important to me is that the way mathematics is written
formally on the page is very different from how it lives actively in our brains
(or my brain, at least). Nobody (or certainly very few people) comes up with
proofs in the elegant short start to finish way that they’re written. Typically,
there’s a mess of chaotic half ideas that slowly get refined down to the written
proof that you see. But often the mess is the exciting part,

CHAPTER 2. WALKS 27

We sketch a few of the main ideas of the proof in an informal setting now,
before giving a complete formal proof. To learn this proof for the exam, you
should have this informal picture in your head, and perhaps a skeleton outline of
the main formal points that need to be shown. You shouldn’t try to memorize
the formal proof word for word like a poem; instead, practice expanding out
from the informal ideas/skeleton proof to the full formal proof on your own a
few times.

It is much easier to see that if a graph G is Eulerian, then every vertex has
even degree. Suppose we wanted to show that a given vertex v was Eulerian;
let us stand at the vertex v and have a friend trace out the Eulerian cycle.
We’ll wait for a while, and then the friend will appear at v along some edge e1,
and then live along some different edge e2. We’ll wait some more, and they’ll
reappear coming from new edge e3, and then leave again along some edge e4.

This will continue until they have arrived or left by every edge that hits v.
But every time they visit v, they must arrive by one edge, and leave by another
one, and hence every visit uses up an even number of edges, and so the degree
d(v) of v must be even. But there was nothing special about the vertex v, and
hence the degree of every vertex must be even.

To argue the other way is more difficult; before trying to show there’s a
closed path that uses all the edges, let’s just construct any closed path. We
pick some vertex v0 to start at, and just randomly choose an edge out of v0, to
some other vertex v1, and from there randomly choosing any edge we haven’t
used yet to another vertex vn, and so on.

To construct a closed walk, we’d like to show we eventually have to return
to v0. We’re only working with finite graphs, so our walk can’t continue forever;
the only possibility we have to rule out is that we reach some vertex vn and find
that we have already used every vertex incident to vn. But as we saw before,
the path will pair up the edges incident to each vertex as an arriving edge and
a departing edge, and we know the degree of vn is even. If the path has already
visited vnk times, then we’ll have used 2k of the edges incident to it; when we
arrive for the k + 1st time we’ll use one edge, and in all we’ll have used 2k + 1
edges, an odd number; since the degree of vn is even there must be at least one
edge we haven’t used to exit by.

You might worry that the argument above suggests we can carry on the
walk forever, which we obviously can’t do since the graph is finite, but the
argument above doesn’t work for v0: when we start the path out at v0, we
haven’t had to arrive there, and so the edge we initially leave by is not paired
with anything. Therefore, if Γ has all vertices with even degree, and we walk
randomly for as long as we can, we’ll always get stuck at our starting vertex.

Hence, we have shown that if Γ is a graph with all vertices having even
degree, there will exist some closed walk in Γ, but the walk we created was
chosen randomly, and there’s no guarantee it will include all the edge of Γ -- in
all likelihood, it won’t.

But if we look at the edges we haven’t used, they will form a simpler graph.
Γ′. There’s no reason for Γ′ to be connected, but it’s not too hard to see that
every vertex of Γ′ will still have even degree: in Γ every vertex had even degree,
and we saw in our first proof that a closed walk that doesn’t repeat edges
uses up an even number of edges at each vertex, and so we’ll have an even
number of edges left at each point. Thus, each connected piece of Γ′ satisfies
the hypothesis of the problem, and is simpler, so we can try to find a closed
walk on each of connected piece of Γ′, and then "stitch" the results together
to get a walk that uses all the pieces. In the formal proof, this process is best
captured using induction, and we’ll save the complete description until then,
but for now we illustrate the process in an example

CHAPTER 2. WALKS 28

A

B

C

D

E

F

6

4

5

3

8

3

1

7

9

10

Figure 2.2.5 Example of a walk

Example 2.2.6 Let’s see an example of how the process of finding an Eulerian
path works for the graph Γ in Figure below.

a b c d

e f g

h i j

Figure 2.2.7 A graph Γ
It probably isn’t hard to immediately find an Eulerian cycle for Γ just by

examination, but to illustrate the algorithm to begin with, we are going to
deliberately choose a cycle that doesn’t use every edge, the cycle aeijgba show
in the next figure:

CHAPTER 2. WALKS 29

a b c d

e f g

h i j

1

2

3

4

5

6

Figure 2.2.8 Initializing with a closed walk in Γ
To extend our cycle to an Eulerian cycle, we delete all the edges used in

the graph, and study the remaining graph. In our case, this graph has two
connected components, a four cycle and a three cycle. Both of these are cycles
themselves, they’re trivially Eulerian, -- in general, it might take some work to
find an Eulerian cycle for the components, but won’t be too hard as the graph
will be smaller.

c de f

gh i

1

2

3

4

1

2

3

Figure 2.2.9 Parts of Γ missed by our walk
Finally, we stitch our Eulerian paths together. We follow our initial cycle

that wasn’t an Eulerian cycle, and the first time we hit a vertex that’s in one
of the other cycles, we insert that cycle in before we continue along our original
path. In our example, our original cycle was aeijgba. a is not eitehr of the other
components, but e is in the four cycle, so before we continue on our original
cycle to i, we insert the four cycle ehije, giving aehije. We now continue along
our original cycle, adding ei, ij, jg, until we reach a vertex g that’s in one of the
added cycles, which we then insert, giving aehijeijgcdg as our cycle so far.

Continuing this process, we find aehijeijgcdgba as an Eulerian cycle.

CHAPTER 2. WALKS 30

a b c d

e f g

h i j

1

2

3

4

5

6

7

8

9

10

1112

13

Figure 2.2.10 The Eulerian cycle stitched together
�

Proof. We first show that if G is Eulerian, then every vertex v ∈ G has even
degree. For suppose the Eulerian cycle visits the vertex vk times. Each time it
visits v it must arrive by one edge, and leave by a different edge. Since the walk
is Eulerian, every edge adjacent to v will be used exactly once by the walk, and
so we see that d(v) = 2k as desired.

Now we suppose that G is connected and that every vertex has even degree.
We will induct on the number of edges of G. If it has no edges, then the theorem
is vacuously true -- we can just take the empty walk.

For the inductive step, suppose that G is connected with m edges, and that
every vertex of G has even degree. Further assume, for the inductive hypothesis,
that every graph H with these properties and less than m edges is Eulerian.

Suppose for now that we can find a closed walk w in G that doesn’t repeat
any edges -- we will justify that this at the end of the proof. If the closed walk
w uses all the edges of G, then w is an Eulerian cycle, and we are done.

If w doesn’t use all the edges of G, we can delete all the edges used in w
and get a graph G \ w with fewer than m edges. Though G \ w might not be
connected, every vertex in G \ w will have even degree, as we’ve subtracted
an even number of edges from each vertex that w visits as argued in the first
part of the proof. Thus, by the inductive hypothesis each connected component
G \ w will have an Eulerian cycle. Since the G is connected, w must include
at least one point from each component of G \ w, and so we can insert the
Eulerian walk on the edges of each component of G \ w from each component
into w when we reach that component, to obtain a closed walk w′ that uses all
the edges of G exactly once, as desired.

All that remains is to justify that G contains at least one closed walk, given
that every vertex has even degree and it contains at least one edge. We form a
walk w by starting at any vertex v and at each step choosing any edge we’ve
never traversed before at random as the next step of the walk. We claim that
w must eventually return back to the starting vertex v. Since G is finite, and
we don’t repeat edges, the only way we could fail to return to v would be if
our walk "got stuck" -- that is, at some point we reach a vertex u and find that
every edge out of u has already been traversed. However, we know that u has
an even number of edges, and also arguing as in the first paragraph of the proof
that every time the walk w visits u it must use up two edges, one for arrival
and one for departure. Hence, when we arrive at u at any time we must have
used up an odd number of edges at u -- an even number from all the previous
times we have visited u, plus one more that we just arrived from. Since u has

CHAPTER 2. WALKS 31

even degree, there must always be at least one edge available for us to choose
from, and so we can never "get stuck" and will eventually reach w again. �

Remark 2.2.11 Note that it does not say: "A graph Γ is Eulerian if and only
if it is connected and every vertex has even degree." This statement in quotation
marks is false, but for "stupid" reasons. If Γ is Eulerian, and En is the graph
with n vertices wit no edges, then Γ tEn is Eulerian but not connected. These
are the only examples of such graphs.
Theorem 2.2.12 A connected graph Γ is semi-Eulerian if and only if it has
exactly two vertices with odd degree.
Proof. A minor modification of our argument for Eulerian graphs shows that
the condition is necessary. Suppose that Γ is semi-Eulerian, with Eulerian
path v0, e1, v1, e2, v3, . . . , en, vn. Then at any vertex other than the starting or
ending vertices, we can pair the entering and leaving edges up to get an even
number of edges.

However, at the first vertex v0 the path leaves along e1 the first time but
never enters it accordingly, so that v0 has an odd degree; similarly, at vn the
path enters one final time along en without leaving, and so vn also has an odd
degree.

To see the condition is sufficient we could also modify the argument for the
Eulerian case slightly, but it is slicker instead to reduce to the Eulerian case.
Suppose that Γ is connected, and that vertices v and w have odd degree and
all other vertices of Γ have even degree. Then we can construct a new graph Γ′
by adding an extra edge e = vw to Γ. Then Γ′ is connected and every vertex
has even degree, and so it has an Eulerian cycle. Deleting the edge e that we
added from this cycle gives an Eulerian path from v to w in Γ. �

2.3 Hamiltonian cycles
We now introduce the concept of Hamiltonian walks. Though on the surface the
question seems very similar to determining whether or not a graph is Eulerian,
it turns out to be much more difficult.
Definition 2.3.1 A graph is Hamiltonian if it has a closed walk that uses every
vertex exactly once; such a path is called a Hamiltonian cycle ♦

First, some very basic examples:
1. The cycle graph Cn is Hamiltonian.

2. Any graph obtained from Cn by adding edges is Hamiltonian

3. The path graph Pn is not Hamiltonian.

Figure 2.3.2 The Icosian game (from Puzzle Musuem) and its solution (from
Wikipedia)

https://www.puzzlemuseum.com/month/picm02/200207icosian.htm
https://en.wikipedia.org/wiki/Icosian_game

CHAPTER 2. WALKS 32

The term Hamiltonian comes from William Hamiltonian, who invented (a
not very successful) board game he termed the "icosian game", which was
about finding Hamiltonian cycles on the dodecahedron graph (and possibly its
subgraphs).

The main thing you’ll need to be able to do with Hamiltonian graphs is
decide whether a given graph is Hamiltonian or not. Although the definition
of Hamiltonian graph is very similar to that of Eulerian graph, it turns out
the two concepts behave very differently. While Euler’s Theorem gave us a
very easy criterion to check to see whether or not a graph Eulerian, there is
no such criterion to see if a graph is Hamiltonian or not. It turns out that
deciding whether or not a graph is Hamiltonian is NP-complete, meaning that
if we could solve that problem efficiently, then you could solve a host of other
difficult problems efficiently as well.

It may seem unfair, then, to ask whether a graph is Hamiltonian or not. But
it’s only in a very theoretical way that the problem is extremely difficult -- as
the number of vertices get very large, the problem gets harder and harderquickly.
For any given graph with a low number of vertices, there aren’t that many
possibilities to check.

If a graph is Hamiltonian, then by far the best way to show it is to exhibit
a Hamiltonian cycle, as in Figure 2.3.2. When the graph isn’t Hamiltonian,
things become more interesting.

The most natural way to prove a graph isn’t Hamiltonian is to do a case by
case analysis of possible paths, showing it doesn’t work. For instance, in lecture
we outlined the proof that if you remove a vertex from the Icosian graph, than
the result isn’t Hamiltonian. A natural way to do this is to pick a vertex, and
consider the possible pairs of edges the path might take through that vertex.
For each possibility, we know some edges won’t be used, and can go further
along that way.

In general, brute-force case-by-case analyses are proofs we want to avoid
when possible, because it can be difficult to make sure we have actually found
all the cases, and the proofs aren’t always enlightening. It’s much better when
we can find a "reason" why the graph isn’t Hamiltonian.
Example 2.3.3

X Y

A

B

Figure 2.3.4 A local configuration that can’t exist in a Hamiltonian graph
Figure 2.3.4 shows a portion of a larger graph G. The exact number of

other vertices in the graph that X and Y are adjacent to is not important;
what matters is that A and B are each adjacent to two vertices, X and Y . Any
path through A would have to use X and Y , but so would any path through
B. But then we have a small four cycle XAY BX which doesn’t use any other
vertices in the graph, and so G cannot be HAmiltonian. �

Lemma 2.3.5 Suppose that G is bipartite and Hamiltonian, with n red vertices
and m blue vertices.

CHAPTER 2. WALKS 33

Proof. Consider a Hamiltonian path in G. Since every edge is between a red
and blue vertex, the vertices in the path must alternate between red and blue.
Considering every other edge of the cycle pairs each red vertex with a blue
vertex, and hence n = m. �

The contrapositive of Lemma 2.3.5 can be used to show graphs aren’t
Hamiltonian: if G is bipartite but doesn’t have the same number of red vertices
and blue vertices, then it can’t be Hamiltonian.
Lemma 2.3.6 The Petersen Graph is not Hamiltonian
Proof. Of course, a case-by-case analysis of possibile Hamiltonian cycles is pos-
sible. The number of cases can be reduced by using symmetries of the Petersen
graph. Instead, for variation and to illustrate a different proof technique, we
will use another method.

Assume for contradiction that the Petersen graph is Hamiltonian, and draw
the ten vertices v1, v2, . . . , v10 around the cycle. The Hamiltonian cycle uses 10
of the 15 edges in the Petersen graph, and so there must be 5 more edges, with
each vertex incident to one of them, as in the Petersen graph every vertex has
degree 3.

Let’s analyse where else the edge adjacent to v1 could go. It can’t go to v1
itself, as the Petersen graph has no loops, and it can’t go to v2 or v10 as the
Petersen graph has no multiple edges. If it went to v3 or v9 it would make a
three cycle, which the Petersen graph doesn’t have, and if it went to v4 or v7,
there’d be a four cycle. Hence, the only options are v1 is adjacent to v5, v6 or v7.
By reversing the direction of the Hamiltonian path, v5 and v7 are equivalent,
and there are only two cases.

But the same analysis holds for every vertex: the extra edge at any vertex
can either go to the opposite side of the circle, or be "off by one" and skip three
vertices to either direction.

We now claim that not all the extra edges can go "directly across" -- there
must be at least one edge that’s off by one. If all the extra edges went directly
across, then v1 would go to v6, and v2 would go to v7, and v1− v6− v7− v2− v1
would be a 4 cycle.

Hence, without loss of generality we may assume that the extra edge at
v1 is v1 − v5. Let us then consider the extra edge at v6. It can’t go directly
across, as that is v1 which already has its extra edge. Hence it must be off
by one, and go to either v2 or v10. But either way we get a four cycle: either
v1−v2−v6−v5−v1, or v1−v10−v6−v5−v1. Hence, we have a contradiction,
and the Petersen graph cannot be Hamiltonian. �

Finally, Ore’s Theorem, a positive result, giving conditions which guarantee
that a graph has a Hamiltonian cycle. First, a little bit of intuition. If we
take an edge to a Hamiltonian graph the result is still Hamiltonian, and the
complete graphs Kn are Hamiltonian. Thus, one might expect that a graph
with "enough" edges is Hamiltonian.

The trick is in finding an interesting meaning of the word "enough". Simply
counting the number of edges does not give very interesting bounds on what
"enough" means, however -- the complete graph has n(n− 1)/2 edges, but we
can make it non-Hamiltonian by removing only n − 2 edges: simply pick a
vertex v and remove all but one of the n− 1 edges coming out of v; then v will
now have degree 1, and hence the resulting graph cannot be Hamiltonian.
Theorem 2.3.7 Ore’s Theorem. Let G be a simple graph with n vertices,
and assume that whenever two distinct vertices v, w are not adjacent, we have
d(v) + d(w) ≥ n. Then G is Hamiltonian.
Proof. We will argue by contradiction, and begin by passing to a maximal
counterexample. Note that if G satisfies the hypotheses, and we add an edge

CHAPTER 2. WALKS 34

e to G between two non-adjacent vertices v and w, then the result will still
satisfy the hypothesis. Indeed, we’ve only increased the degree of some vertices.
So, we had a counterexample G to Ore’s Theorem, we could iteratively add
edges to G that didn’t create Hamiltonian cycles, until we got a graph G that
satisfies the hypotheses of Ore’s theorem, desn’t have any Hamiltonian cycles,
but if we add any edge e to G the result is Hamiltonian.

We now observe that such a G must have a Hamiltonian path: indeed, pick
any edge e not in G and add it to G. THe resulting graph is by assumption
Hamiltonian, and since G wasn’t Hamiltonian, the Hamiltonian cycle must
contain the edge e. Deleting the edge e from the Hamiltonian cycle gives a
Hamiltonian path in G.

Thus, let v1 − v2 − · · · vn be a Hamiltonian path in G. We know v1 and vn

are not adjacent, as otherwise G would be Hamiltonian. Thus, since G satisfies
the hypothesis of Ore’s theorem, we know d(v1) + d(vn) ≥ n. We already have
one edge adjacent to v1, and one edge adjacent to vn, and so there must be at
least n− 2 other edges adjacent to one or other of these vertices. We will see
that no matter how we add n− 2 edges to these two vertices, we will create a
Hamiltonian cycle.

To see this, note there is ever an i with v1 adjacent to vi and vi−1 adjacent
to vn, then G would have a Hamiltonian cycle: namely v1 − v2 − · · · − vi−1 −

vn − vn−1 −
...vi − v1. Now, there are n− 3 different vertices we can add edges

to v1 to, namely v3 − vn−1, and similarly there are n− 3 vertices we can add
edges connecting vn to, namely v2, . . . vn−2. We arrange these 2(n− 3) edges
into a a grid with 2 rows and n − 3 columns, so that the two edges in each
column are v1 − vi and vn − vi−1, a pair of edges that can form a Hamiltonian
cycle as in the last paragraph.

As we need to add at least n − 2 edges, but we only have n − 3 columns,
there must be at least one column that contains two edges by the pigeonhole
principle, but then we can create a Hamiltonian cycle using those two edges
and the edges in our Hamiltonian path. �

Note that Ore’s Theorem is not an if and only if, and so Ore’s Theorem
cannot be used to prove that graphs aren’t Hamiltonian. Indeed, there are
plenty of graphs that are Hamiltonian but do not satisfy the hypotheses of Ore’s
Theorem. For instance, the cycle graph Cn is Hamiltonian, but every vertex
has degree 2, so if n ≥ 5 the hypotheses of Ore’s Theorem are not satisfied.

We also highlight that the proof began by considering a maximal counterex-
ample to Ore’s Theorem, and considering maximal/minimal counterexamples
is often a useful proof technique, as you the maximality/minimality gives you
some extra structure to work with.

2.4 Exercises
1. The questions in this exercise pertain to the graph G shown in Figure 2.4.1.

CHAPTER 2. WALKS 35

(a) What is the degree of vertex 8?

(b) What is the degree of vertex 10?

(c) How many vertices of degree 2 are there
in G? List them.

(d) Find a cycle of length 8 in G.

(e) What is the length of a shortest path
from 3 to 4?

(f) What is the length of a shortest path
from 8 to 7?

(g) Find a path of length 5 from vertex 4
to vertex 6.

1

2

3

4

5

6

7

8

910

G

Figure 2.4.1 A graph

2. Draw a graph with 8 vertices, all of odd degree, that does not contain a
path of length 3 or explain why such a graph does not exist.

3. Find an eulerian circuit in the graph G in Figure 2.4.2 or explain why one
does not exist.

1

2

3

4

5

6

7

8

9

10

11
12

Figure 2.4.2 A graph G

4. Consider the graph G in Figure 2.4.3. Determine if the graph is eulerian.
If it is, find an eulerian circuit. If it is not, explain why it is not. Determine
if the graph is hamiltonian. If it is, find a hamiltonian cycle. If it is not,
explain why it is not.

d

m
b

k

l

c

i

j

f
e

a

gh

n

Figure 2.4.3 A graph G

Chapter 3

Algorithms

This chapter covers several graph algorithms. We start with two algorithms
for finding minimal weight spanning trees, Kruskal’s algorithm and Prim’s
algorithm. We discuss Dijkstra’s algorithm for finding the shortest path between
two points in a directed, weighted graph.

Much of the material in this chapter is taken from the open source textbook
Applied Combinatorics by Keller and Trotter.

3.1 Prüfer Codes
This section covers the Prüfer Code, a bijection between labelled trees and
certain sequences of integers. This bijection allows us to prove Cayley’s theorem,
giving a count of such labelled trees.

Given a combinatorial structure, such as a graph or a tree, it is natural to
ask how many of such structures there are. Often, there is no nice formula,
for instance, for the number of different trees on n vertices there. But if the
vertices are labelled, then it turns out there’s a nice answer.
Definition 3.1.1 Labelled tree. A labelled tree on n vertices is a tree with
n vertices, which are labelled 1, 2, . . . , n. ♦

Theorem 3.1.2 Cayley’s Theorem. There are nn−2 labelled trees on n
vertices.

One more convenient way of writing down a labelled tree is to write down all
the edges. If there tree has n vertices, then there are n− 1 edges, and writing
down all the edges takes 2n− 2 numbers between 1...n. However, we see that
we’re writing down the same tree lots of different times, by changing the order
of the edges, and which vertex from each edge we write first. Furthermore, not
every sequence of 2n− 2 numbers between 1...n will result in a tree.

To fix this problem, we will write down the edges in a particular order.
Every tree has at least two leaves, and deleting a leaf gives a small tree. We
will use these facts to give a systematic ordering to the edges in a labelled tree,
as follows: the first edge will be the edge connecting the leaf with the smallest
label to the rest of the tree. We will record that edge, with the leaf on the
bottom row, and the "parent" vertex, i.e., the vertex the leaf is connected to, in
the top row. Deleting the leaf and the vertex gives a tree with one fewer vertex,
and we iterate the process.
Algorithm 3.1.3 Pruning Algorithm. Input: A labelled tree T on n
vertices.

36

CHAPTER 3. ALGORITHMS 37

Output: A 2× n− 1 table with entries in {1, . . . , n} that records the edges
of T in a specified order.Find the leaf v with the lowest label; it will have one
edge e, connecting it to some vertex (its "parent") w. Form a new tree T ′ by
deleting v and e, and record e in the output table, putting the deleted vertex v
in the bottom row and its parent w above it in the top row.

This method fixes the problem of the ordering of the edges not being unique,
but as of now we are still recording more information than needed. But note
the following: since we delete a vertex when we put it in the bottom row, no
number will appear twice on the bottom row. The last column is the last two
vertices existing, and if we look at the bottom row and the last entry on the top
row, we see that every number from 1 to n will appear exactly once in these
spots.
Definition 3.1.4 Prüfer code. If record the edges of a tree T as in the
Pruning Algorithm, the first n− 2 number appear in the top row is the Prüfer
code of T ♦

To finish the proof of Cayley’s Theorem, we need to show that the Prüfer
code is a bijection. The easiest way to do this is to show that it has an inverse;
that is, given any sequence of n− 2 numbers between 1 and n, we can construct
a tree T have that sequence as its Prüfer code.

This is most easily done by filling in the n numbers we deleted from the
table of edges to get the Prüfer code. We will in the numbers on the bottom
row from left to right. The first number on the bottom row will be the lowest
number that does not appear in the Prüfer code. Delete the first column, and
then iterate -- the next number will be the lowest number we haven’t used, and
that doesn’t appear in the remainder of the Prüfer code.

Another way to phrase the last line, is that the next number filled in is
always the lowest number the doesn’t appear as the bottom entry on one of
the n− 1 columns.
Example 3.1.5 Suppose T has Prüfer code 4,4,1,4,5,5. This code has length
6, so we looking to complete it by filling in numbers from 1 to 8. We illustrate
the process step by step.
The lowest number that doesn’t appear is 2, so
we fill that in on the bottom of the first column.
We no longer have to consider the 4 directly
above this 2, as it is not the bottom element of
its column.

Table 3.1.6
4 4 1 4 5 5
2

To fill in the next cell, we put the lowest number
not occuring as the lowest element of a column,
namely 3.

Table 3.1.7
4 4 1 4 5 5
2 3

And now the lowest term not on the bottom of
its column is 6, so we add that:

Table 3.1.8
4 4 1 4 5 5
2 3 6

Now the only 1 appearing has an element be-
neath it, and so 1 gets added in the next column:

Table 3.1.9
4 4 1 4 5 5
2 3 6 1

And now all the 4s have been passed, so the
next number is 4. We jump ahead and fill in
the two numbers under 5 as well:

Table 3.1.10
4 4 1 4 5 5
2 3 6 1 4 7

CHAPTER 3. ALGORITHMS 38

The two numbers we haven’t used yet are 5 and
8, so they are the entries in the last column,
giving us the completed table of edges

Table 3.1.11
4 4 1 4 5 5 8
2 3 6 1 4 7 5

Having constructed the table encoding all the edges, we can now draw the
labelled tree with those edges

1

6

4

2

5

3

7

8

Figure 3.1.12 The tree with Prüfer code 441455
�

3.2 Minimum Weight Spanning Trees
In this section, we consider pairs (G, w) where G = (V,E) is a connected graph
and w : E → N0. For each edge e ∈ E, the quantity w(e) is called the weight
of e. Given a set S of edges, we define the weight of S, denoted w(S), by
setting w(S) =

∑
e∈S w(e). In particular, the weight of a spanning tree T is

just the sum of the weights of the edges in T .
Weighted graphs arise in many contexts. One of the most natural is when the

weights on the edges are distances or costs. For example, consider the weighted
graph in Figure 3.2.1. Suppose the vertices represent nodes of a network and
the edges represent the ability to establish direct physical connections between
those nodes. The weights associated to the edges represent the cost (let’s say in
thousands of dollars) of building those connections. The company establishing
the network among the nodes only cares that there is a way to get data between
each pair of nodes. Any additional links would create redundancy in which
they are not interested at this time. A spanning tree of the graph ensures that
each node can communicate with each of the others and has no redundancy,
since removing any edge disconnects it. Thus, to minimize the cost of building
the network, we want to find a minimum weight (or cost) spanning tree.

CHAPTER 3. ALGORITHMS 39

a

b

c

d

e

f

g

h

i

j

k

l

39

56

87
30

38
29

55

25
26

96

88

43 23

79

34

83

92

71
56

8884

66
58

59

49

79

m68

Figure 3.2.1 A weighted graph
To do this, this section considers the following problem:

Problem 3.2.2 Find a minimum weight spanning tree T of G. �
To solve this problem, we will develop two efficient graph algorithms, each

having certain computational advantages and disadvantages. Before developing
the algorithms, we need to establish some preliminaries about spanning trees
and forests.

3.2.1 Preliminaries
The following proposition about the number of components in a spanning forest
of a graph G has an easy inductive proof. You are asked to provide it in the
exercises.
Proposition 3.2.3 Let G = (V,E) be a graph on n vertices, and let H = (V, S)
be a spanning forest. Then 0 ≤ |S| ≤ n−1. Furthermore, if |S| = n−k, then H
has k components. In particular, H is a spanning tree if and only if it contains
n− 1 edges.

The following proposition establishes a way to take a spanning tree of a
graph, remove an edge from it, and add an edge of the graph that is not
in the spanning tree to create a new spanning tree. Effectively, the process
exchanges two edges to form the new spanning tree, so we call this the exchange
principle.

Proposition 3.2.4 Exchange Principle. Let T = (V, S) be spanning tree
in a graph G, and let e = xy be an edge of G which does not belong to T. Then

1. There is a unique path P = (x0, x1, x2, . . . , xt) with (a) x = x0; (b) y = xt;
and (c) xixi+1 ∈ S for each i = 0, 1, 2, . . . , t− 1.

2. For each i = 0, 1, 2, . . . , t− 1, let fi = xixi+1 and then set

Si = {e} ∪ {g ∈ S : g 6= fi},

i.e., we exchange edge fi for edge e. Then Ti = (V, Si) is a spanning
tree of G.

CHAPTER 3. ALGORITHMS 40

Proof. For the first fact, it suffices to note that if there were more than one
distinct path from x to y in T, we would be able to find a cycle in T. This is
impossible since it is a tree. For the second, we refer to Figure 3.2.5. The black
and green edges in the graph shown at the left represent the spanning tree T.
Thus, f lies on the unique path from x to y in T and e = xy is an edge of G
not in T. Adding e to T creates a graph with a unique cycle, since T had a
unique path from x to y. Removing f (which could be any edge fi of the path,
as stated in the proposition) destroys this cycle. Thus Ti is a connected acyclic
subgraph of G with n− 1 + 1− 1 = n− 1 edges, so it is a spanning tree.

e

f

x
y e

x
y

Figure 3.2.5 The exchange principle
�

For both of the algorithms we develop, the argument to show that the
algorithm is optimal rests on the following technical lemma. To avoid trivialities,
we assume n ≥ 3.
Lemma 3.2.6 Let F be a spanning forest of G and let C be a component of
F. Also, let e = xy be an edge of minimum weight among all edges with one
endpoint in C and the other not in C. Then among all spanning trees of G that
contain the forest F, there is one of minimum weight that contains the edge e.
Proof. Let T = (V, S) be any spanning tree of minimum weight among all
spanning trees that contain the forest F, and suppose that e = xy is not
an edge in T. (If it were an edge in T, we would be done.) Then let P =
(x0, x1, x2, . . . , xt) be the unique path in T with (a) x = x0; (b) y = xt; and
(c) xixi+1 ∈ S for each i = 0, 1, 2, . . . , t− 1. Without loss of generality, we may
assume that x = x0 is a vertex in C while y = xt does not belong to C. Then
there is a least non-negative integer i for which xi is in C and xi+1 is not in C.
It follows that xj is in C for all j with 0 ≤ j ≤ i.

Let f = xixi+1. The edge e has minimum weight among all edges with
one endpoint in C and the other not in C, so w(e) ≤ w(f). Now let Ti

be the tree obtained by exchanging the edge f for edge e. It follows that
w(Ti) = w(T)− w(f) + w(e) ≤ w(T). Furthermore, Ti contains the spanning
forest F as well as the edge e. It is therefore the minimum weight spanning
tree we seek. �

Remark 3.2.7 Although Bob’s combinatorial intuition has improved over the
course he doesn’t quite understand why we need special algorithms to find
minimum weight spanning trees. He figures there can’t be that many spanning
trees, so he wants to just write them down. Alice groans as she senses that
Bob must have been absent when the material from Section 3.1 was discussed.
In that section, we learned that a graph on n vertices can have as many as
nn−2 spanning trees (or horrors, the instructor may have left it off the syllabus).
Regardless, this exhaustive approach is already unusable when n = 20. Dave
mumbles something about being greedy and just adding the lightest edges one-
by-one while never adding an edge that would make a cycle. Zori remembers a
strategy like this working for finding the height of a poset, but she’s worried

CHAPTER 3. ALGORITHMS 41

about the nightmare situation that we learned about with using FirstFit to
color graphs. Alice agrees that greedy algorithms have an inconsistent track
record but suggests that Lemma 3.2.6 may be enough to get one to succeed
here.

3.2.2 Kruskal’s Algorithm
In this section, we develop one of the best known algorithms for finding a
minimum weight spanning tree. It is known asKruskal’s Algorithm, although
some prefer the descriptive label Avoid Cycles because of the way it builds the
spanning tree.

To start Kruskal’s algorithm, we sort the edges according to weight. To be
more precise, let m denote the number of edges in G = (V,E). Then label the
edges as e1, e2, e3, . . . , em so that w(e1) ≤ w(e2) ≤ · · · ≤ w(em). Any of the
many available efficient sorting algorithms can be used to do this step.

Once the edges are sorted, Kruskal’s algorithm proceeds to an initialization
step and then inductively builds the spanning tree T = (V, S):

Algorithm 3.2.8 Kruskal’s Algorithm.
Initialization. Set S = ∅ and i = 0.

Inductive Step. While |S| < n− 1, let j be the least non-negative integer so
that j > i and there are no cycles in S ∪ {ej}. Then (using pseudo-code)
set

i = j and S = S ∪ {j}.
The correctness of Kruskal’s Algorithm follows from an inductive argument.

First, the set S is initialized as the empty set, so there is certainly a minimum
weight spanning tree containing all the edges in S. Now suppose that for
some i with 0 ≤ i < n, |S| = i and there is a minimum weight spanning
tree containing all the edges in S. Let F be the spanning forest determined
by the edges in S, and let C1, C2, . . . , Cs be the components of F. For each
k = 1, 2, . . . , s, let fk be a minimum weight edge with one endpoint in Ck and
the other not in Ck. Then the edge e added to S by Kruskal’s Algorithm is just
the edge {f1, f2, . . . , fs} having minimum weight. Applying Lemma 3.2.6 and
the inductive hypothesis, we know that there will still be a minimum weight
spanning tree of G containing all the edges of S ∪ {e}.

Example 3.2.9 Kruskal’s Algorithm.

CHAPTER 3. ALGORITHMS 42

Let’s see what Kruskal’s algorithm does on the weighted graph
in Figure 3.2.1. It first sorts all of the edges by weight. We
won’t reproduce the list here, since we won’t need all of it. The
edge of least weight is ck, which has weight 23. It continues
adding the edge of least weight, adding ag, fg, fi, fj, and
bj. However, after doing this, the edge of lowest weight is fb,
which has weight 38. This edge cannot be added, as doing so
would make fjb a cycle. Thus, the algorithm bypasses it and
adds bc. Edge ai is next inspected, but it, too, would create a
cycle and is eliminated from consideration. Then em is added,
followed by dl. There are now two edges of weight 56 to be
considered: al and dj. Our sorting algorithm has somehow
decided one of them should appear first, so let’s say it’s dj.
After adding dj, we cannot add al, as agfjdl would form a
cycle. Edge dk is next considered, but it would also form a
cycle. However, ek can be added. Edges km and dm are then
bypassed. Finally, edge ch is added as the twelfth and final
edge for this 13-vertex spanning tree. The full list of edges
added (in order) is shown to the right. The total weight of
this spanning tree is 504.

c k 23
a g 25
f g 26
f i 29
f j 30
b j 34
b c 39
e m 49
d l 55
d j 56
e k 59
c h 79

�

3.2.3 Prim’s Algorithm
We now develop Prim’s Algorithm for finding a minimum weight spanning
tree. This algorithm is also known by a more descriptive label: Build Tree.
We begin by choosing a root vertex r. Again, the algorithm proceeds with an
initialization step followed by a series of inductive steps.
Algorithm 3.2.10 Prim’s Algorithm.
Initialization. Set W = {r} and S = ∅.

Inductive Step. While |W | < n, let e be an edge of minimum weight among
all edges with one endpoint in W and the other not in W . If e = xy,
x ∈W and y 6∈W , update W and S by setting (using pseudo-code)

W = W ∪ {y} and S = S ∪ {e}.
The correctness of Prim’s algorithm follows immediately from Lemma 3.2.6.

Example 3.2.11 Prim’s Algorithm.

CHAPTER 3. ALGORITHMS 43

Let’s see what Prim’s algorithm does on the weighted graph
in Figure 3.2.1. We start with vertex a as the root vertex.
The lightest edge connecting a (the only vertex in the tree
so far) to the rest of the graph is ag. Next, fg is added.
This is followed by fi, fj, bj, and bc. Next, the algorithm
identifies ck as the lightest edge connecting {a, g, i, f, j, b, c}
to the remaining vertices. Notice that this is considerably
later than Kruskal’s algorithm finds the same edge. The
algorithm then determines that al and jd, both of weight 56
are the lightest edges connecting vertices in the tree to the
other vertices. It picks arbitrarily, so let’s say it takes al. It
next finds dl, then ek, and then em. The final edge added
is ch. The full list of edges added (in order) is shown to the
right. The total weight of this spanning tree is 504. This (not
surprisingly) the same weight we obtained using Kruskal’s
algorithm. However, notice that the spanning tree found is
different, as this one contains al instead of dj. This is not
an issue, of course, since in both cases an arbitrary choice
between two edges of equal weight was made.

a g 25
f g 26
f i 29
f j 30
b j 34
b c 39
c k 23
a l 56
d l 55
e k 59
e m 49
c h 79

�

3.2.4 Comments on Efficiency
An implementation of Kruskal’s algorithm seems to require that the edges
be sorted. If the graph has n vertices and m edges, this requires m logm
operations just for the sort. But once the sort is done, the process takes only
n− 1 steps—provided you keep track of the components as the spanning forest
expands. Regardless, it is easy to see that at most O(n2 logn) operations are
required.

On the other hand, an implementation of Prim’s algorithm requires the
program to conveniently keep track of the edges incident with each vertex and
always be able to identify the edge with least weight among subsets of these
edges. In computer science, the data structure that enables this task to be
carried out is called a heap.

3.3 Digraphs
In this section, we introduce another useful variant of a graph. In a graph,
the existence of an edge xy can be used to model a connection between x and
y that goes in both ways. However, sometimes such a model is insufficient.
For instance, perhaps it is possible to fly from Atlanta directly to Fargo but
not possible to fly from Fargo directly to Atlanta. In a graph representing the
airline network, an edge between Atlanta and Fargo would lose the information
that the flights only operate in one direction. To deal with this problem, we
introduce a new discrete structure. A digraph G is a pair (V,E) where V is a
vertex set and E ⊂ V × V with x 6= y for every (x, y) ∈ E. We consider the
pair (x, y) as a directed edge from x to y. Note that for distinct vertices x
and y from V , the ordered pairs (x, y) and (y, x) are distinct, so the digraph
may have one, both or neither of the directed edges (x, y) and (y, x). This is in
contrast to graphs, where edges are sets, so {x, y} and {y, x} are the same.

Diagrams of digraphs use arrowheads on the edges to indicate direction.
This is illustrated in Figure 3.3.1. For example, the digraph illustrated there
contains the edge (a, f) but not the edge (f, a). It does contain both edges
(c, d) and (d, c), however.

CHAPTER 3. ALGORITHMS 44

a
bc

d

e

f

g

h

Figure 3.3.1 A Digraph
When G is a digraph, a sequence P = (r = u0, u1, . . . , ut = x) of distinct

vertices is called a directed path from r to x when (uiui+1) is a directed edge
in G for every i = 0, 1, . . . , t− 1. A directed path C = (r = u0, u1, . . . , ut = x)
is called a directed cycle when (ut, u0) is a directed edge of G.

3.4 Dijkstra’s Algorithm for Shortest Paths
Just as with graphs, it is useful to assign weights to the directed edges of a
digraph. Specifically, in this section we consider a pair (G, w) where G = (V,E)
is a digraph and w : E → N0 is a function assigning to each directed edge
(x, y) a non-negative weight w(x, y). However, in this section, we interpret
weight as distance so that w(x, y) is now called the length of the edge (x, y).
If P = (r = u0, u1, . . . , ut = x) is a directed path from r to x, then the
length of the path P is just the sum of the lengths of the edges in the path,∑t−1

i=0 w(uiui+1). The distance from r to x is then defined to be the minimum
length of a directed path from r to x. Our goal in this section is to solve the
following natural problem, which has many applications:
Problem 3.4.1 For each vertex x, find the distance from r to x. Also, find a
shortest path from r to x. �

3.4.1 Description of the Algorithm
To describe Dijkstra’s algorithm in a compact manner, it is useful to extend
the definition of the function w. We do this by setting w(x, y) =∞ when x 6= y
and (x, y) is not a directed edge of G. In this way, we will treat ∞ as if it were
a number (although it is not!).1

We are now prepared to describe Dijkstra’s Algorithm.

Algorithm 3.4.2 Dijkstra’s Algorithm. Let n = |V |. At Step i, where
1 ≤ i ≤ n, we will have determined:

1. A sequence σ = (v1, v2, v3, . . . , vi) of distinct vertices from G with r =
v1. These vertices are called permanent vertices, while the remaining
vertices will be called temporary vertices.

1This is not an issue for computer implementation of the algorithm, as instead of using
∞, a value given by the product of the number of vertices and the maximum edge weight
may be used to simulate infinity.

CHAPTER 3. ALGORITHMS 45

2. For each vertex x ∈ V , we will have determined a number δ(x) and a path
P (x) from r to x of length δ(x).

Initialization (Step 1) Set i = 1. Set δ(r) = 0 and let P (r) = (r) be the
trivial one-point path. Also, set σ = (r). For each x 6= r, set δ(x) = w(r, x)
and P (x) = (r, x). Let x be a temporary vertex for which δ(x) is minimum.
Set v2 = x, and update σ by appending v2 to the end of it. Increment i.

Inductive Step (Step i, i > 1) If i < n, then for each temporary x, let

δ(x) = min{δ(x), δ(vi) + w(vi, x)}.

If this assignment results in a reduction in the value of δ(x), let P (x) be
the path obtained by adding x to the end of P (vi).
Let x be a temporary vertex for which δ(x) is minimum. Set vi+1 = x,
and update σ by appending vi+1 to it. Increment i.

3.4.2 Example of Dijkstra’s Algorithm
Before establishing why Dijkstra’s algorithm works, it may be helpful to see
an example of how it works. To do this, consider the digraph G shown in
Figure 3.4.3. For visual clarity, we have chosen a digraph which is an oriented
graph, i.e., for each distinct pair x, y of vertices, the graph contains at most
one of the two possible directed edges (x, y) and (y, x).

a
b

c

d

e

f

g

h

23

55

74

42

47

70

29

31

79

120

24

66

31
8825

66

Figure 3.4.3 A digraph with edge lengths
Suppose that the root vertex r is the vertex labeled a. The initialization

step of Dijkstra’s algorithm then results in the following values for δ and P :

Step 1. Initialization.

σ = (a)
δ(a) = 0; P (a) = (a)
δ(b) =∞; P (b) = (a, b)
δ(c) = 47; P (c) = (a, c)
δ(d) =∞; P (d) = (a, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)

CHAPTER 3. ALGORITHMS 46

δ(g) =∞; P (g) = (a, g)
δ(h) =∞; P (h) = (a, h)

Before finishing Step 1, the algorithm identifies vertex f as closest to a
and appends it to σ, making a permanent. When entering Step 2, Dijkstra’s
algorithm attempts to find shorter paths from a to each of the temporary
vertices by going through f . We call this process “scanning from vertex f .” In
this scan, the path to vertex d is updated, since δ(f) + w(f, d) = 24 + 120 =
144 <∞ = w(a, d).

Step 2. Scan from vertex f .

σ = (a, f)
δ(a) = 0; P (a) = (a)
δ(b) =∞; P (b) = (a, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 144 = 24 + 120 = δ(f) + w(f, d); P (d) = (a, f, d) updated
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) =∞; P (g) = (a, f)
δ(h) =∞; P (h) = (a, h)

Before proceeding to the next step, vertex c is made permanent by making
it v3. In Step 3, therefore, the scan is from vertex c. Vertices b, d, and g have
their paths updated. However, although δ(c) + w(c, e) = 47 + 23 = 70 = δ(e),
we do not change P (e) since δ(e) is not decreased by routing P (e) through c.

Step 3. Scan from vertex c.

σ = (a, f, c)
δ(a) = 0; P (a) = (a)
δ(b) = 102 = 47 + 55 = δ(c) + w(c, b); P (b) = (a, c, b) updated
δ(c) = 47; P (c) = (a, c)
δ(d) = 135 = 47 + 88 = δ(c) + w(c, d); P (d) = (a, c, d) updated
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 113 = 47 + 66 = δ(c) + w(c, g); P (g) = (a, c, g) updated
δ(h) =∞; P (h) = (a, h)

Now vertex e is made permanent.

Step 4. Scan from vertex e.

σ = (a, f, c, e)
δ(a) = 0; P (a) = (a)
δ(b) = 101 = 70 + 31 = δ(e) + w(e, b); P (b) = (a, e, b) updated
δ(c) = 47; P (c) = (a, c)
δ(d) = 135; P (d) = (a, c, d)
δ(e) = 70; P (e) = (a, e)

CHAPTER 3. ALGORITHMS 47

δ(f) = 24; P (f) = (a, f)
δ(g) = 112 = 70 + 42 = δ(e) + w(e, g); P (g) = (a, e, g) updated
δ(h) =∞; P (h) = (a, h)

Now vertex b is made permanent.

Step 5. Scan from vertex b.

σ = (a, f, c, e, b)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132 = 101 + 31 = δ(b) + w(b, d); P (d) = (a, e, b, d) updated
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 180 = 101 + 79 = δ(b) + w(b, h); P (h) = (a, e, b, h) updated

Now vertex g is made permanent.

Step 6. Scan from vertex g.

σ = (a, f, c, e, b, g)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132; P (d) = (a, e, b, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 178 = 112 + 66 = δ(g) + w(g, h); P (h) = (a, e, g, h) updated

Now vertex d is made permanent.

Step 7. Scan from vertex d.

σ = (a, f, c, e, b, g, d)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132; P (d) = (a, e, b, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 161 = 132 + 29 = δ(d) + w(d, h); P (h) = (a, e, b, d, h) updated

Now vertex h is made permanent. Since this is the last vertex, the algorithm
halts and returns the following:

CHAPTER 3. ALGORITHMS 48

Final Results of Dijkstra’s Algorithm.

σ = (a, f, c, e, b, g, d, h)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132; P (d) = (a, e, b, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 161; P (h) = (a, e, b, d, h)

3.4.3 The Correctness of Dijkstra’s Algorithm
Now that we’ve illustrated Dijkstra’s algorithm, it’s time to prove that it
actually does what we claimed it does: find the distance from the root vertex
to each of the other vertices and a path of that length. To do this, we first
state two elementary propositions. The first is about shortest paths in general,
while the second is specific to the sequence of permanent vertices produced by
Dijkstra’s algorithm.

Proposition 3.4.4 Let x be a vertex and let P = (r = u0, u1, . . . , ut = x)
be a shortest path from r to x. Then for every integer j with 0 < j < t,
(u0, u1, . . . , uj) is a shortest path from r to uj and (uj , uj+1, . . . , ut) is a shortest
path from uj to ut

Proposition 3.4.5 When the algorithm halts, let σ = (v1, v2, v3, . . . , vn). Then

δ(v1) ≤ δ(v2) ≤ · · · ≤ δ(vn).
We are now ready to prove the correctness of the algorithm. The proof we

give will be inductive, but the induction will have nothing to do with the total
number of vertices in the digraph or the step number the algorithm is in.
Theorem 3.4.6 Dijkstra’s algorithm yields shortest paths for every vertex x in
G. That is, when Dijkstra’s algorithm terminates, for each x ∈ V , the value
δ(x) is the distance from r to x and P (x) is a shortest path from r to x.
Proof. The theorem holds trivially when x = r. So we consider the case where
x 6= r. We argue that δ(x) is the distance from r to x and that P (x) is a
shortest path from r to x by induction on the minimum number k of edges in a
shortest path from r to x. When k = 1, the edge (r, x) is a shortest path from
r to x. Since v1 = r, we will set δ(x) = w(r, x) and P (x) = (r, x) at Step 1.

Now fix a positive integer k. Assume that if the minimum number of edges
in a shortest path from r to x is at most k, then δ(x) is the distance from
r to x and P (x) is a shortest path from r to x. Let x be a vertex for which
the minimum number of edges in a shortest path from r to x is k + 1. Fix
a shortest path P = (u0, u1, u2, . . . , uk+1) from r = u0 to x = uk+1. Then
Q = (u0, u1, . . . , uk) is a shortest path from r to uk. (See Figure 3.4.7.)

CHAPTER 3. ALGORITHMS 49

r

Q

P (uk)

uk P
x

Figure 3.4.7 Shortest paths
By the inductive hypothesis, δ(uk) is the distance from r to uk, and P (uk)

is a shortest path from r to uk. Note that P (uk) need not be the same as
path Q, as we suggest in Figure 3.4.7. However, if distinct, the two paths
will have the same length, namely δ(uk). Also, the distance from r to x is
δ(uk)+w(uk, x) ≥ δ(uk) since P is a shortest path from r to x and w(uk, x) ≥ 0.

Let i and j be the unique integers for which uk = vi and x = vj . If j < i,
then

δ(x) = δ(vj) ≤ δ(vi) = δ(uk) ≤ δ(uk) + w(uk).

Therefore the algorithm has found a path P (x) from r to x having length δ(x)
which is at most the distance from r to x. Clearly, this implies that δ(x) is the
distance from r to x and that P (x) is a shortest path.

On the other hand, if j > i, then the inductive step at Step i results in

δ(x) ≤ δ(vi) + w(vi, y) = δ(uk) + w(uk, x).

As before, this implies that δ(x) is the distance from r to x and that P (x) is a
shortest path. �

3.5 Algorithm for Longest Paths
To complement Dijkstra’s algorithm for finding the short path, in this section
we give an algorithm for finding the longest path between two vertices in a
directed graph.

It is not immediately clear why we might want to do this, so first in Subsec-
tion 3.5.1 we give a motivational problem: scheduling work on a complicated
project. The algorithm we present will only work on acyclic directed graphs, so
in Subsection 3.5.2 we define these, explain why this isn’t a restriction for our
intended application, and give the first step of the algorithm: "topologically
sorting" the vertices of an acyclic directed graph. Finally, in Subsection 3.5.3
we explain the actual algorithm.

3.5.1
The main application of the longest path algorithm is in scheduling. Suppose
we have a large project -- say, building a house -- that is composed of many
smaller projects: digging the foundation, building the walls, connecting to gas,
electricity, and water, building the roof, doing the interiors, landscaping, etc.

Some of these activities will require others to be done before them (you
can’t put the roof on before you’ve built the walls; you don’t want to do the
landscaping before you’ve dug your water lines), while others could be done at
the same time (finishing the interiors and doing the landscaping). Each sub-job
has an expected amount of time required to finish it; you’d like to know before

CHAPTER 3. ALGORITHMS 50

hand how long the whole task will take, and when the various sub-jobs should
be done so you can arrange the contractors.

From a series of jobs like this, we will construct a weighted, directed, acyclic
graph. The edges will be the sub-jobs. The weights of each edge will be the
expected length of time that job has. The structure of the graph will encode
the dependencies of the subjobs on each other -- an edge e will flow into an
edge f if the job f immediately depends about the job e.

We will work out the construction of this graph in one example. It is
not always trivial to construct the directed graph from the table of jobs and
dependencies. It is not clear what the vertices should be, and sometimes
dummy edges and vertices need to be encoded. You do not need to worry
about constructing these graphs in general, though if you’re curious it can be
interesting to think about. Any exam question about this topic would supply
you with the directed graph.Example === Consider the following table, listing
tasks $$A-H$$, the expected time of completion for each task, and the required
tasks before a given task can be started.
Table 3.5.1
Task Time PrerequisitesA 6 B 7 C 4 AD 3 AE 4 B,DF 10 CG 3 CH 10 E,G

Here is the corresponding graph encoding this information:

Construction of the graph ==== We outline how the graph above was
constructed. We make one vertex for the start, one vertex for the finish, and
then another vertex for each set of dependencies, that is, the entries in the
third column. Then we draw an edge for each letter, beginning at the vertex
corresponding to its set of prerequisites (or the start, if it has none), and ending
at the vertex that contains it as a prerequisite (or the end, if no tasks require
it as a prerequisite). Note that this method works only if any two sets of
prerequisites either have nontrivial intersection or are identical. The tricky
cases you don’t have to worry about are when this isn’t true. Longest Paths
---- With that detour out of the way, we see why finding the longest path in a
directed acyclic graph is useful: in case the edges are tasks and the weights are
expected times, the length of the longest path is the minimal time the whole
project would be able to be completed. Moreover, it is useful to actually know
what the longest paths are -- to achieve this minimal time, each task in the
longest path must be completed in the expected amount of time, and the next
task in the path must be started immediately when the first one finishes. For
this reason, the longest paths are known as ∗critical paths∗.

3.5.2
3.5.3

3.6 The Traveling Salesperson Problem
In this section we discuss the Travelling Salesperson problem. In Subsection 3.6.1
we introduce the problem and give some explanation of why it is very hard
in general. Rather than try to solve it exactly, we will resort to providing
upper and lower bounds for the solution. In Subsection 3.6.2 we discuss various
methods of constructing upper bounds. In Subsection 3.6.3 we give a method
of constructing lower bounds.

CHAPTER 3. ALGORITHMS 51

3.6.1 Introduction to the Traveling Salesperson Problem
Let us first describe the Traveling Salesperson Problem, or TSP for short, in
informal language, and then translate it into a question about graph theory.

Imagine you work for a company, travelling from city to city, trying to
sell some product in each (for instance, encyclopedias). You are assigned a
list of cities you need to visit, and you need to start from your home, travel
from city to city visiting them all, and finally return to your home. Of course,
travelling from city to city is expensive (either in terms of money, travel time,
or something else), and to turn a profit your company wants you to organize
the order you visit each of cities so that the total cost is as cheap as possible.
This minimiziation problem is the TSP.

Translated into graph theory, the TSP can be succinctly stated as follows:
given a weighted graph G, find the cheapest Hamiltonian path. That is, the
cheapest closed walk on G that visits every vertex exactly once.

First, note that it is enough to consider the complete graph Kn. If we are
given some other weighted graph G, we can add all the edges not in G but
make their weights much larger than any of the weights inside G.

Another important point is that the problem of determining whether a given
graph G has a Hamiltonian cycle is a special case of the traveling salesman
problem. To see this, suppose we’re given a graph G, and we want to determine
whether it is Hamiltonian. We create a weighted Kn, with vertices the vertices
of G by giving the edge v − w a very small weight ε if v and w are adjacent in
G, and a very large weight M if v and w ∗are not∗ adjacent in G. Then, any
Hamiltonian path in G would have cost nε, where as any path that uses an
edge not in G costs more than M . So, if we make M > nε, the TSP for our
weighted Kn will have a solution with cost less than M if and only if G had a
Hamiltonian cycle.

Since determining whether a graph G is Hamiltonian is difficult (NP com-
plete), the TSP will also be. As such, we will not discuss any algorithms for
actually solving TSP. Instead, we will discuss methods for giving upper and
lower bounds for the TSP.

3.6.2 Finding upper bounds to the TSP
Getting good upper bounds to the TSP will turns out to be difficult. However,
finding not so good upper bounds will turn out to be quite easy.

For instance, any solution to the TSP will be a Hamiltonian cycle, and in
particular if G contains n vertices, the TSP solution will contain n edges. Let
M be the weight of the most expensive edge in G.

w(C) =
n∑

i=1
w(ei) ≤

M∑
i=1

= nM

Since the TSP asks for the cheapeast Hamiltonian cycle, taking any Hamiltonian
cycle and calculating its cost will be an upper bound for the TSP. Just choosing
a random Hamiltonian cycle will in general be very expensive and silly --
for instance, going from Sheffield to London to Rotherham to Edinburgh to
Chesterfield to Glasgow to Nottingham to Brighton is clearly not optimal.

A greedy algorithm will give a heuristically better result: we call it the
nearst neighbor algorithm. At each step, simply go to the nearest city you have
not already visited. This will give good results at the beginning, but since
we do not do any planning ahead, it will in general give bad results, as the
following example illustrates:

CHAPTER 3. ALGORITHMS 52

v0

v1

v2

v3

v4 v5

v6

v7

v8

v9

w

Figure 3.6.1 The graph G where nearest neighbour struggles
Consider running the Nearest Neighbor algorithm starting at v0. At the

first step, we have a choice -- we could go to v1 or to v9. Suppose we go to v1.
After that, our choice is forced -- v1− v2− v3− v4− v5− v6− v7− v8− v9 costs
one at each step. Now, we still have to visit T before returning to V0, which
will cost us 10 to detour through. We clearly should have planned ahead and
visited $$T$$ in between vertices v4 and v5 at a cost of 4.

Clearly the nearest neighbour algorithm is not in general very good, and
better algorithms are possible. We present it first to give a quick but reasonable
way to get a solution to TSP that isn’t completely horrible, and second to
illustrate that greedy algorithms in general will not be efficient. We briefly
mention two other ways to get lower bounds.

Another, slightly better, greedy algorithm might be called nearest insertion.
It inductively builds bigger and bigger closed loops one vertex at time. When
there is a closed loop with k vertices v1 − v2 − v3 − · · · − vk − v1 and we want
to add vertex w to the loop, we look at each of the adjacent legs vi − vi+1,
and determine how much it would raise the cost to insert the next vertex w
in between those two cities (changing the path to v1 − w − vi+1), being sure
to also check for inserting it between vk and v1. This does much better at our
example above, but can run into other problems, and involves a little more
bookkeeping and arithmetic, so I won’t ask you to implement it on the exam.

Another method inolves a qualitive change of view. The greedy algorithms
we describe so far are only heuristics to getting a decent path. There is no
guarantee that they produce an output that is in any way close to the optimal
path, and indeed examples can be engineered to make them extremely bad. It
would be nice to have an upper bound that was guaranteed to not be too far off
the optimal solution. The Christofides algorithm does just that, by producing a
Hamiltonian cycle that is guaranteed to have weight at most 3/2 of the weight
of the optimal solution. Very briefly, it does this by starting with a minimal
weight spanning tree, makes a subgraph by adding edges to the tree until every
vertex has even degree, taking an Eulerian circuit of that, and then removing
edges to get a Hamiltonian cycle.

For nearly fifty years, Christofides algorithm was the best known guaranteed
upper bound on the Travelling Salesperson problem, but in the summer 2020
of Nathan Klein, Anna Karlin and Shayan Oveis Gharan managed to modify
the algorithm to give a very slight improvement, producing a cycle guaranteed
to be within 3/2− ε for some ε > 10−36. See this Quanta article for a popular

CHAPTER 3. ALGORITHMS 53

account of their work.

3.6.3 A lower point for TSP
To get a lower bound for TSP we have to be a little more intelligent. Suppose
we had a solution C to the TSP for Γ, and that we deleted one vertex v from
C. Deleting a vertex from a cycle gives us a path P , and in particular a tree.
Furthermore, P visits every vertex in Γ except for v, and so it is a spanning
tree of Γ \ v.

We can use Kruskal’s algorithm (or another) to find a minimal spanning
tree T of Γ \ v, and we have that w(P) ≥ w(T). The cycle C contains just two
more edges, from v to two other vertices, say a and b. We can obtain lower
bounds on the weights of the edges v − a and v − b by taking the weights of
the lowest two edges out of v, maybe e1 and e2. We have

w(C) = w(P) + w(a− v) + w(b− v) ≥ w(T) + w(e1) + w(e2)

giving us a lower bound on solutions to the TSP.

3.7 Exercises
1. For the graph in Figure 3.7.1, use Kruskal’s algorithm (“avoid cycles”)

to find a minimum weight spanning tree. Your answer should include a
complete list of the edges, indicating which edges you take for your tree
and which (if any) you reject in the course of running the algorithm.

d
b

f

e

a

l

c

h

13 j

i

15

8

16

5

20

12

47

5

16

16

14

10

8
22 12

94

g

k

8

8

15

5

8

Figure 3.7.1 Find a minimum weight spanning tree

2. For the graph in Figure 3.7.1, use Prim’s algorithm (“build tree”) to find a
minimum weight spanning tree. Your answer should list the edges selected
by the algorithm in the order they were selected.

3. For the graph in Figure 3.7.2, use Kruskal’s algorithm (“avoid cycles”)
to find a minimum weight spanning tree. Your answer should include a
complete list of the edges, indicating which edges you take for your tree
and which (if any) you reject in the course of running the algorithm.

CHAPTER 3. ALGORITHMS 54

d

b

f

e

a

l

c

h

j

i

g

k

4

20

4

4

1

1

1

12

10
10

25

6
5

17

18

10

15

25

7

Figure 3.7.2 Find a minimum weight spanning tree

4. For the graph in Figure 3.7.2, use Prim’s algorithm (“build tree”) to find a
minimum weight spanning tree. Your answer should list the edges selected
by the algorithm in the order they were selected.

5. For the graph in Figure 3.7.3, use Kruskal’s algorithm (“avoid cycles”)
to find a minimum weight spanning tree. Your answer should include a
complete list of the edges, indicating which edges you take for your tree
and which (if any) you reject in the course of running the algorithm.

d b
f

ea

c h

j

i

g

k

3

5

1

4
19

318

6

17
26

47
7

24

13

9

10

2

Figure 3.7.3 Find a minimum weight spanning tree

6. For the graph in Figure 3.7.3, use Prim’s algorithm (“build tree”) to find a
minimum weight spanning tree. Your answer should list the edges selected
by the algorithm in the order they were selected.

7. A new local bank is being created and will establish a headquarters h, two
branches b1 and b2, and four ATMs a1, a2, a3, and a4. They need to build
a computer network such that the headquarters, branches, and ATMs can
all intercommunicate. Furthermore, they will need to be networked with
the Federal Reserve Bank of Atlanta, f . The costs of the feasible network
connections (in units of $10,000) are listed below:

hf 80 hb1 10 hb2 20 b1b2 8
fb1 12 fa1 20 b1a1 3 a1a2 13
ha2 6 b2a2 9 b2a3 40 a1a4 3
a3a4 6

CHAPTER 3. ALGORITHMS 55

The bank wishes to minimize the cost of building its network (which
must allow for connection, possibly routed through other nodes, from
each node to each other node), however due to the need for high-speed
communication, they must pay to build the connection from h to f as
well as the connection from b2 to a3. Give a list of the connections the
bank should establish in order to minimize their total cost, subject to this
constraint. Be sure to explain how you selected the connections and how
you know the total cost is minimized.

8. A disconnected weighted graph obviously has no spanning trees. However,
it is possible to find a spanning forest of minimum weight in such a graph.
Explain how to modify both Kruskal’s algorithm and Prim’s algorithm to
do this.

9. Prove Proposition 3.2.3.
10. In the paper where Kruskal’s algorithm first appeared, he considered the

algorithm a route to a nicer proof that in a connected weighted graph with
no two edges having the same weight, there is a unique minimum weight
spanning tree. Prove this fact using Kruskal’s algorithm.

11. Use Dijkstra’s algorithm to find the distance from a to each other vertex
in the digraph shown in Figure 3.7.4 and a directed path of that length.

2

a b

d

e

f

g

h

c

6

1

10
2

2

1

5

4

3

1

5
4

8

Figure 3.7.4 A directed graph

12. Table 3.7.5 contains the length of the directed edge (x, y) in the intersection
of row x and column y in a digraph with vertex set {a, b, c, d, e, f}. For
example, w(b, d) = 21. (On the other hand, w(d, b) = 10.) Use this data
and Dijkstra’s algorithm to find the distance from a to each of the other
vertices and a directed path of that length from a.
Table 3.7.5 A digraph represented as a table of data

w a b c d e f

a 0 12 8 43 79 35
b 93 0 18 21 60 33
c 17 3 0 37 50 30
d 85 10 91 0 17 7
e 28 47 39 14 0 108
f 31 7 29 73 20 0

13. Use Dijkstra’s algorithm to find the distance from a to each other vertex
in the digraph shown in Figure 3.7.6 and a directed path of that length.

CHAPTER 3. ALGORITHMS 56

2

a

b

d

ef

gh

c

2

3

4

1

3

15

1

1

3
615

2

i

Figure 3.7.6 A directed graph

14. Table 3.7.7 contains the length of the directed edge (x, y) in the intersection
of row x and column y in a digraph with vertex set {a, b, c, d, e, f}. For
example, w(b, d) = 47. (On the other hand, w(d, b) = 6.) Use this data
and Dijkstra’s algorithm to find the distance from a to each of the other
vertices and a directed path of that length from a.
Table 3.7.7 A digraph represented as a table of data

w a b c d e f

a 0 7 17 55 83 42
b 14 0 13 47 27 17
c 37 42 0 16 93 28
d 10 6 8 0 4 32
e 84 19 42 8 0 45
f 36 3 76 5 17 0

15. Give an example of a digraph having an undirected path between each pair
of vertices, but having a root vertex r so that Dijkstra’s algorithm cannot
find a path of finite length from r to some vertex x.

16. Notice that in our discussion of Dijkstra’s algorithm, we required that the
edge weights be nonnegative. If the edge weights are lengths and meant to
model distance, this makes perfect sense. However, in some cases, it might
be reasonable to allow negative edge weights. For example, suppose that
a positive weight means there is a cost to travel along the directed edge
while a negative edge weight means that you make money for traveling
along the directed edge. In this case, a directed path with positive total
weight results in paying out to travel it, while one with negative total
weight results in a profit.
(a) Give an example to show that Dijkstra’s algorithm does not always

find the path of minimum total weight when negative edge weights
are allowed.

(b) Bob and Xing are considering this situation, and Bob suggests that
a little modification to the algorithm should solve the problem. He
says that if there are negative weights, they just have to find the
smallest (i.e., most negative weight) and add the absolute value of
that weight to every directed edge. For example, if w(x, y) ≥ −10
for every directed edge (x, y), Bob is suggesting that they add 10 to
every edge weight. Xing is skeptical, and for good reason. Give an
example to show why Bob’s modification won’t work.

Chapter 4

Graphs on Surfaces

This chapter covers drawing graphs on surfaces. To motivate this topic, we will
begin by thinking about videogames

We start with discussing whether or not graphs are planar, proving that
K3,3 and K5 are not planar using a method we call the Planarity Algorithm
for Hamiltonian graphs. We discuss the more general Kuratowski’s theorem
for proving any graph is planar or not. We introduce other surfaces, and how
to draw graphs on them -- the sphere, Mobius band, and torus in particular.
After a brief discussion of dual graphs, we prove Euler’s theorem about planar
graphs and explore several applications.

4.1 Introduction to Graphs on Surfaces
We begin our study of graphs on surfaces with an old chestnut of a problem,
the solution of which we will develop into a more general algorithm.

4.1.1 The Utilities Problem
Suppose there are three houses, owned by Alice, Bob, and Carol, and they’d
each like to be connected to one of three Utilities, say, gas, electricity, and water.
There is no real difficulty in the real world, but if we add the restriction that
we don’t want any of the lines to cross over or under each other, the problem
becomes quite interesting. A failed attempt at drawing a solution is shown
here.

57

CHAPTER 4. GRAPHS ON SURFACES 58

Figure 4.1.1 An attempt at solving the three utilities problem
Although this attempt failed, it seems very difficult to rule out that some

other attempt wouldn’t succeed; trying to make a case by case argument seems
quite difficult to organize, and it’s not clear that there are even finitely many
possibilities. We need a careful way to approach the problem, which we will do
in a moment, but first we will use this problem as motivation to make a few
definitions.

4.1.2
Definition 4.1.2 A graph is planar if it can be drawn on a piece of paper so
that no edges cross. ♦

That definition is a bit loose -- for instance, it’s left implicit, we’re drawing
the edges as lines, with the endpoints being the two vertices it connects. But
this will be strong enough for our purposes.

With this definition in hand, the Utilities Question is asking whether the
graph K3,3 is planar -- treat the three utilities as red vertices, say, and the
three houses as the blue vertices. This doesn’t really help us organize our proof,
however. To do that, we will use the basic fact that any circle drawn on the
plane has an inside and an outside.

This last fact sounds absolutely trivial, but first, it is not true on other
surfaces, for instance, on the torus -- in our video game world, the top of the
screen makes a circle, but a point just above this circle is really at the bottom
of the video game world, and so the circle doesn’t cut the torus into two pieces;
I also illustrated this with the Mobius band: the central line down the middle
doesn’t separate it into two pieces. This fact is usually stated as follows:
Theorem 4.1.3 Jordan Curve Theorem. Any simple closed plane curve
has an interior and an exterior

Though easy to state, and intuitively obvious, the Jordan Curve Theorem
is surprisingly subtle and difficult to prove; we won’t use any more topology
than this.

Before seeing it in practice, let’s discuss informally how the Jordan Curve
Theorem can be used to help prove whether a graph G is planar or not. Suppose
that we have found a large cycle Ck as a subgraph of G. Then, if we had a
planar drawing of G, this cycle would have to appear as a circle. By the Jordan
Curve Theorem, this circle would have an inside and an outside, and every
vertex and edge not in our cycle Ck would have to be either entirely within the
circle, or entirely outside the circle. This gives us a way to organize the case by
case argument.

CHAPTER 4. GRAPHS ON SURFACES 59

The bigger a cycle we can find, the fewer other vertices and edges we need
to consider, and so we have a much cleaner case by case argument. In the best
cases, the graph is Hamiltonian and the cycle Ck includes all the vertices of G,
and we only have to do a case by case analysis for some the remaining edges.

Let’s see how this general principle gets illustrated in practice
Theorem 4.1.4 K3,3 isn’t planar
Proof. First let’s name the vertices of K3,3: let the vertices a, b, c be the
blue circle vertices, and x, y, z be the red rectangle vertices. Then the path
a− x− b− y − c− z − a is a Hamiltonian cycle, and so if K3,3 were planar it
would be drawn as a circle in the plane, as shown below:

a

x b

y

cz

Figure 4.1.5 The Hamiltonian cycle in K3,3

This contains 6 of the 9 edges of K3,3; we need to add the edges a− y, b− z
and c− x. The edge a− y could be drawn inside the circle or outside, suppose
we draw it inside, as shown below, with the added edge dashed.

a

x b

y

cz

Figure 4.1.6 Adding a− y inside
Then on the inside of the circle, x and c are on different sides of the line

a− y, and so the edge connecting them must go outside the circle. The added
edge could go around the right of the circle, as shown below here:

CHAPTER 4. GRAPHS ON SURFACES 60

a

x b

y

cz

Figure 4.1.7 Adding a− y inside
or around the left, as shown here:

a

x b

y

cz

Figure 4.1.8 Adding a− y inside
But now b and z are different sides of a− y inside the circle, and on different

sides of c− x outside the circle, and so cannot be connected without making
two edges cross.

If we had began by drawing a− y outside the circle, then we would have
had to draw c− x inside the circle, and had the same problem with being able
to draw the last line; as shown here:

CHAPTER 4. GRAPHS ON SURFACES 61

a

x b

y

cz

Figure 4.1.9 Adding a− y inside
�

4.2 The planarity algorithm for Hamiltonian graphs
In the previous chapter we showed that K3,3 isn’t planar; in this section we
investigate how the ideas we used to solve the utilities problem for K3,3-- namely,
the Jordan Curve theorem and the fact that K3,3 is Hamiltonian -- generalize
to other graphs. In the end, this will culminate in "The Planarity Algorithm
for Hamiltonian Graphs".

4.2.1 Stereographic Projection and Unnecessary cases
It will make our life easier if before we investigate other graphs we streamline
our proof for K3,3 slightly: there were a few times where we had to treat
different cases that wound up behaving essentially the same, and we’d like to
see that we didn’t actually need to treat them as separate cases. In particular,
we would like to show that the following three seemingly different ways to
connect the first two vertices lead to the same analysis:

1. Connecting them inside the Hamiltonian cycle

2. Connecting them outside "to the left"

3. Connecting them outside "to the right"

Figure 4.2.1 The three cases

CHAPTER 4. GRAPHS ON SURFACES 62

The solution will be to think about drawing the graphs on the sphere S2 instead
of the plane. First, let’s see why this solves our problem. On the plane, the
inside of a circle is different from the outside of a circle -- the inside is bounded,
but the outside is unbounded. However, on the sphere, the two sides of a circle
are equivalent -- you can deform any circle to be an equator, and then the
northern hemisphere is equivalent to the southern hemisphere. This shows on
there sphere, the inside and the outside aren’t really different cases.

Furthermore, going around the outside to "the left" or "to the right" are
equivalent on the sphere -- you can slowly make the path around the sphere
bigger and bigger, and then slip it around the north or south pole, and back.
Alternatively, we’ve already seen that the inside of the circle is equivalent to
the outside of the circle on the sphere S2, and on the inside of the circle it
doesn’t matter exactly how the two points are connected, and so it shouldn’t
matter on the outside, either.

So we’ve argued that if we’re trying to draw a graph on the sphere, all three
cases are the same, but it should still feel like a bait-and-switch: we weren’t
trying to draw graphs on there sphere, we were trying to draw graphs on the
plane. The connection comes from the fact that the sphere can be viewed as a
plane with one additional point.

Proposition 4.2.2 Let p ∈ S2 be any point. Then S2 \ {p} ∼= R2.
Proof. One way to visualize this is imagine the sphere as being made from very
flexible clay. If we poke a small hole in the top of the sphere, we could stick
our fingers in and make the hole larger, and gradually stretch and bend and
reform for the sphere to be a flat disk, which could be stretched to be the whole
plane, in the same way the tangent function maps the interval (−π/2, pi/2) to
the whole real line R

Alternatively, one could use stereographic projection, as shown in Figure
. Draw S2 in R3 as the unit sphere at the origin, and let N = (0, 0, 1) be the
north pole of the sphere. Stereographic projection gives a bijection between
S2 \ {N} (the sphere minus the north pole) to the plane, as follows: for any
point p 6= N the line through p and N must meet the xy-plane at one point.
On the other hand, any line through N and a point on the xy-plane must meet
the sphere at one other point.

Figure 4.2.3 Stereographic Projection
Accepting that S2 is R2 minus one point, we see that we can draw a given

graph G on S2 if and only if we can draw G on R2: if we draw it on R2, we
can view the R2 as a small patch of S2. And if we have a drawing on S2, there
must be at least one point on S2 that isn’t in the drawing of G, and doing

CHAPTER 4. GRAPHS ON SURFACES 63

stereographic projection from that point gives a drawing of G on the plane R2.
�

4.2.2 The planarity algorithm
The preceeding discussion may have felt heavy going, but the upshot is that
the cases that seemed "the same" in our analysis of K3,3 actually are the same,
and similar cases will be the same for any graph. This will make it much easier
to extend our reasoning to more complicated graphs.

Suppose that G is Hamiltonian, and choose a Hamiltonian cycle; if G were
planar than this cycle must be drawn as a circle, and every other edge must
either lie entirely inside or entirely outside the graph. Now consider two edges
e = ab and f = xy that are not part of the cycle. Depending on the order that
a, b, x and y appear as you go around the Hamiltonian cycle, one of two things
will happen:

1. If the vertices of e and f do not interlace (e.g. abxy, yxab, xbay, · · ·), or
if they share a vertex (e.g., a = x), then e may be drawn both inside or
both outside the circle without crossing

2. If the vertices of e and f do interlace (e.g. axby, xayb, yaxb,) then if
e and f are drawn both inside or both outside the circle, they must cross

This motivates the following definition

Definition 4.2.4 Cross(G,C). Let G be a Hamiltonian graph, and C a
Hamiltonian cycle in G. The crossing graph of G and C, denoted Cross(G,C)
has as vertices the edges of G that aren’t in the cycle, and an edge between
vertices p and q if the vertices of the corresponding edges interleave -- that is,
p and q are adjacent if they cannot be drawn on the same side of the cycle C
without crossing. ♦

Algorithm 4.2.5 The planarity algorithm for complete graphs. Sup-
pose that G is Hamiltonian, and C is a Hamiltonian cycle. Then G is planar
if and only if Cross(G,C) is bipartite.

The idea is that if G is planar, the vertices of Cross(G,C) are naturally
bicolored, with the red vertices, say, corresponding to the edges that are drawn
inside the cycle C, and the blue edge corresponding to the edges that are drawn
outside the cycle C. The definition of the edges of Cross(G,C) guarantees there
are no edges between vertices of the same color.

Similarly, if we can find a colouring of the vertices of Cross(G,C) so that
adjacent vertices have different colours, then we can draw all the edges of
G corresponding to red vertices of Cross(G,C) inside (or outside) C without
having any of them cross.
Example 4.2.6 The complete graph K5 isn’t planar. Let’s apply the
planarity algorithm to the complete graph K5. Let’s label the vertices 1-5, and
take our Hamiltonian cycle C to be 123451, which we’ve drawn as the outside
pentagon in the following figure:

CHAPTER 4. GRAPHS ON SURFACES 64

1

2

3

4

5
Figure 4.2.7 The graph (K5)

Since K5 has
(5

2
)

= 10 vertices, there are 5 edges that aren’t used in C,
namely 13,14, 24,25, and 35. So Cross(K5, 123451) will consist of these five
vertices. We see that 13 will be adjacent to 24 and 25, since these edges would
cross if drawn inside, but 13 is not adjacent to 14 or 35, since these edges would
cross 13 if drawn on the same side of the circle, as illustrated in the next figure

1

2

3

4

5

13 crosses 24 and 25

1

2

3

4

5

1

2

3

4

5

13 doesn’t cross 14 or 35

1

2

3

4

5

Figure 4.2.8 The edges 13 does and does not cross
Similar consideration with the other edges show that Cross(K5, 123451) is

the following graph, which is isomorphic to a five cycle:

CHAPTER 4. GRAPHS ON SURFACES 65

13

14

24

25

35
Figure 4.2.9 The graph Cross(K5, 123451)

In particular, Cross(K5, 123451) is not bipartite. Hence, by the planarity
algorithm for Hamiltonian graphs, we see that K5 is not planar. �

Example 4.2.10 A planar graph. Let’s use the planarity algorithm for
Hamiltonian graphs to find a planar drawing of the graph shown in the next
figure.

b

c x

y

za

Figure 4.2.11 A graph H
We see that H is Hamiltonian and take as our Hamiltonian cycle the path

around the outside, namely abcxyza. There are then six edges not contained in
the Hamiltonian cycle, and we find that Cross(H, abcxyz) is as follows:

ax

cy bx

cz

aybz

Figure 4.2.12 The graph Cross(H, abcxyza)

CHAPTER 4. GRAPHS ON SURFACES 66

For instance, in H the edge ax crosses the three edges cy, cz and bz, and so
in Cross(H, abcxyza), the vertex ax is adjacent to these vertices.

The graph Cross(H, abcxyza) has no odd cycles and hence is bipartite --
for instance, we may color ax, bx and ay red, and the other three vertices blue.
Then, to draw H in the plane without edges crossing, we draw the red edges
inside the cycle, and the blue edges outside the cycle:

b

c x

y

za

Figure 4.2.13 The graph H drawn without edges crossing
�

4.3 Kuratowski’s Theorem
The planrity Algorithm for Hamiltonian graphs gives a very convenient and
systematic way to determine whether a Hamiltonian graph is planar or not,
and we saw that with some work it can be hacked to work for graphs that are
"almost" Hamiltonian -- that have a cycle that go through all but one or two
vertices, say.

Stretching these ideas further, the general logic of considering cycles and
applying the Jordan Curve theorem to them would provide a way to prove
whether an abritrary graph is planar or not, but as we have more or more
vertices that aren’t on our cycle to consider the arguments would get more
and more complicated, and it’s clear that a better method is desirable. In
this section we will present, (but not completely prove) Kuratowski’s theorem,
which gives a method to determine whether or not an arbitrary graph is planar.

4.3.1 Planarity, subgraphs, and subdivisions
The idea behind Kuratowski’s theorem rests on two small observations, which
we illustrate in a simple example before discussing more formally.

CHAPTER 4. GRAPHS ON SURFACES 67

G1 G2

Figure 4.3.1 Two nonplanar graphs
The graphs G1 and G2 in Figure 4.3.1 both look a lot like K3,3, and since

K3,3 is nonplanar, we might expect them to be nonplanar as well, but we need
to be careful and precise in checking this. We work this out in the next example.
Example 4.3.2 Two nonplanar graphs. The graph G1 in Figure 4.3.1
is K3,3 with a vertex and two edges added to it; put another way, K3,3 is a
subgraph of G1. If we could draw G1 in the plane, we could just ignore this
extra vertex and these two edges, and we’d have a drawing of K3,3 in the plane,
but we know K3,3 isn’t planar. So to avoid contradictions we are forced to
conclude that G1 isn’t planar.

The graph G2 looks just like K3,3, but we have added an extra vertex of
degree two in the middle of one of the edges. Note that K3,3 is not a subgraph
of G2, and so we need to use slightly different reasoning than we did for showing
G isn’t planar. But drawing G2 is just like drawing K3,3 and then adding an
extra dot for the new vertex of degree two. If we could draw G2 in the plane,
we could just skip adding this extra dot, and we’d have a drawing of K3,3 in
the plane. Again, since we know K3,3 isn’t planar, we see that G2 isn’t planar,
either. �

We will now generalize the methods we used to show G and H are nonplanar
and summarize them as lemmas. The reasoning we used to prove that G was
nonplanar doesn’t need to be changed at all to prove:
Lemma 4.3.3 If H is nonplanar, and H is a subgraph of G, then G isn’t
planar.
Proof. We’ve essentially already proved it, but we’ll restate the reasoning in a
different way for completeness.

When we draw a graph G in the plane, we also draw all the subgraphs of
G in the plane. Thus, if G is planar, then all of its subgraphs are planar. Our
lemma is the contrapositive of this statement. �

Lemma 4.3.3 is logically equivalent to the discussion above, but it’s worth
restating the logic in this direction as well: if we can’t draw G in the plane,
then we certainly can’t draw H in the plane without edges crossing, as if we
could then we’d have a drawing of H as part of our big drawing.
Example 4.3.4 Complete graphs. If n > 5, then Kn is not planar by
Lemma 4.3.3, because K5 is a subgraph of Kn, and we know that K5 isn’t
planar.

CHAPTER 4. GRAPHS ON SURFACES 68

We could also have used the fact that K3,3 is a subgraph of Kn, and K3,3
is also nonplanar. �

To generalize the method we used to prove G2 is non-planar, we first make
a form definition that encapsulates the idea of "adding dots" to the middle of
edges:
Definition 4.3.5 Subdivision. We say that G is a subdivision of H if G is
obtained from H by adding some vertices of degree two in the middle of some
of the edges of H. ♦

Example 4.3.6 Cycles and Paths. Any path graph Pn, n ≥ 2 is a subdi-
vision of the graph P2 consisting of two vertices with an edge between them.
Any cycle graph Cm,m ≥ 3 is a subdivision of the triangle C3 �

Lemma 4.3.7 If G is a subdivision of a nonplanar graph H, then G is
nonplanar.
Proof. Suppose that G was planar, and draw it in the graph. Then erase the,
vertices of degree we added when we subdivided H, merging the edges on either
side to one. We obtain a planar drawing of H, a contradiction, and so G must
not have been planar. �

4.3.2 Kuratowski’s Theorem
The definitions and lemma of the previous section essentially prove the "easy"
direction of the following theorem, which will be our main tool for proving
graphs aren’t planar.
Theorem 4.3.8 Kuratowski’s Theorem. A graph G is nonplanar if and
only if G has a subgraph that’s a subdivision of K3,3 or K5.
Proof. We will only prove one direction: that if G has such a subgraph, then
G is nonplanar; the other direction is more difficult.

Suppose that H is a subgraph of G that is subdivision of K3,3 or K5.
Since we’ve proven K3,3 and K5 are nonplanar, we know H is nonplanar by
Lemma 4.3.7. Now since we H is a subgraph of G and we know H is nonplanar,
we know G is nonplanar by Lemma 4.3.3. �

Although we’ve only proven one direction of Kuratowski’s theorem, it’s
the important direction -- the one that lets us prove graphs are nonplanar.
The other direction would tell us information about subgraphs of a graph
that we already knew was nonplanar for some other reason. Or, taking the
contrapositive, it would let us prove a graph was planar by looking at all
subgraphs of it and showing none of them looked like K5 or K3,3. But this
would be a lot of work and there’s a much easier way to show a graph is planar:
draw it in the plane! If you’re asked to prove a graph is planar, you will almost
always also be asked to draw it in the plane.

However, we will implicitly use the hard direction in the following way: if
a graph G is nonplanar, you can always use Kuratowski’s theorem to prove
that it’s nonplanar. This is reassuring because it means our tool will always
work to prove it’s nonplanar, and that you aren’t wasting your time looking for
subgraphs that don’t exist.

4.3.3 Applying Kuratowski’s Theorem
The tricky part of using Kuratowski’s theorem is actually finding the desired
subgraph. We won’t really discuss algorithm aspects of this; for any graph
you are asked to prove non-planar, it will be possible to do so by educated
trial an error. A few rules of thumb may be helpful, however. First, note

CHAPTER 4. GRAPHS ON SURFACES 69

that subdivision cannot increase the degree of any vertex. So, for G to have
a subgraph that’s a subdivision of K5,G has to have at least 5 vertice with
degree at least 4; if it doesn’t, but we still suspect G to be nonplanar, we know
instead that we should be looking for a subdivision of K3,3.

Conceptually, it can be useful to think that some vertices of G are going
to be vertices of your K5 or K3,3, and we’re going to need to connect those.
We can use the remaining vertices of G as parts of subdivided edges between
these, but these extra vertices can only be used in at most one such connection.
Thus, these extra vertices are a limited resource we have, and a useful heuristic
in looking for subgraph is to take a "greedy" approach, where we choose our
vertices to require as few subdivisions as possible to make connections. We
illustrate this idea in the next example.
Example 4.3.9 The Petersen graph isn’t planar.

1

2

34

5

6

7

89

10

Figure 4.3.10 The Petersen graph, labeled
Let us use Kuratowski’s Theorem to prove that the Petersen graph isn’t

planar; Figure 4.3.10 has a drawing of the Petersen graph with the vertices
labeled for referece. Since the Petersen graph is regular of degree three, we
know that it can’t have a subgrpah that’s a subdivision of K5, as it would need
to have some vertices of degree 4 or larger.

It makes sense to attempt a greedy algorithm -- in the standard drawing of
the Petersen grpah, pick the very top vertex 1 to be "red" and the three vertices
adjacent to it to, 2, 5, and 6, to be "blue". We need two more red vertices. All
vertices left are adjacent to exactly one blue vertex, so from a greedy point of
view there is no preference for which vertex we pick to be the next blue vertex.
Let us pick 9 to be another red vertex. Then it is connected directly to blue
vertex 6, but we must find paths from 9 to 2 and 5. We could, for instance,
take the path 9-4-3-2 to connect to 2, but that would use two vertices up while

CHAPTER 4. GRAPHS ON SURFACES 70

the path 9-7-2 only uses one extra vertex, and so seems better. Then we can
connected 9 to 5 through vertex 4, and vertex 9 has been connected to all the
blue vertices.

Now, we need to choose one more vertex to be a red vertex, and the vertices
we haven’t used are 3, 10, and 8. If we tried to make 3 the last red vertex we
run into a problem: we need to connect vertex 3 to 3 other vertices, but one of
the edges goes to vertex 4 which was one of the subdivided vertices that we
can’t visit again. Hence, we only have two possible paths out of 3, and will
ever only be able to connect it to two blue vertices. A similar problem occurs if
we try to make 10 the last red vertex -- it’s adjacent to the vertex 7 used as a
subdivided vertex. The remaining choice is vertex 8, which works, as shown in
the following diagram.

1

2

34

5

6

7

89

10

1

9 8

2

6

5

Figure 4.3.11 A subdivided K3,3 in the Petersen graph
The red and blue vertices of the subdivided K3,3 are shown as squares/

circles, and the edges of the subdivided K3,3 are colored thick -- only the dotted
edges 7-10 and 3-4 of the Petersen graph are not used in the subgraph. �

4.4 Drawing Graphs on Other surfaces
We saw, using stereographic projection, that being able to draw a graph on
the sphere is the same as being able to draw the graph on the plane. In this
section we will discuss drawing graphs on other surfaces -- the torus and the
Möbius strip we will discuss in detail, though similar ideas work for any surface.
We need a way to represent such graphs on a piece of paper, for use in a book
(or on the exam, say). Much of the material from the rest of this chapter
(Kuratowski’s theorem, Euler’s theorem) have analogues for other surfaces, but
are beyond the scope of this module.

CHAPTER 4. GRAPHS ON SURFACES 71

4.4.1 Motivation and culture: Manifolds and Surfaces
In this short subsection we are going to be slightly informal. The goal is simply
to motivate this section about drawing graphs on surfaces other than the sphere,
and to give a motivating problem that we will solve the next section on Euler’s
Theorem.

People used to think that the earth was flat, because if you can’t see the
whole thing, but can just look at just one little patch of it around you, it looks
like a piece of R2. Formally, a mathematicians say "locally homeomorphic to
R2" to mean that you can’t tell it apart from R2 by just looking at a small
piece of it.

To compliment the familiar earth idea of the earth being round, we give a
few more shocking thought-experiment examples. The first is: how do we know
the earth is round? I, personally haven’t been to space, haven’t been all over
the world. Maybe there’s a giant tunnel running from the south pole to the
north pole, and the earth is really a torus (the surface of a donut or a bagel).

The idea of the earth being the surface of the torus probably seems absolutely
ridiculous, but it happens "by accident" in videogames. In old games like Pacman
or Asteroids, the game takes place on one computer screen, but to keep it from
having edges and corners the designers made the game "wrap around" -- if
anything goes off the right edge of the screen, it comes back at the corresponding
spot on the left edge of the screen, and similarly anything that goes off the top
of the screen comes back on the bottom of the screen.

A similar model, expanded slightly, is used in many other video games,
like early ones in the Final Fantasy series, use essentially the same process to
model the surface of a planet. We claim theat any of these videogame words
are actually the surface of a torus. Instead of a computer screen, let’s put the
world on a very flexible flat sheet. To get the left and right edges to match up,
we can curl the screen up into a cylinder -- going off one edge takes us around
the back of the cylinder. Now, our cylinder has two circular boundaries, coming
from the top and bottom of the screen, and to get these to match up we can
bend our cylinder up and glue these together to make a torus.

Finally, we can step up a dimension, we generally assume that the three
dimensional space we live in is R3, but what evidence do we have for that?
Maybe it’s got some different shape, and if we could fly for untold light years
in one direction we’d come back to the earth from a different direction! I can
recommend Janna Levin’s popular science book / memoir "How the Universe
got its Spots" for an account of how physicists studied whether patterns in
the cosmic microwave background radiation could have been created by the
universe being a shape other than R3.

That discussion may feel out of place; its purpose was to motivate the
following definition, which we will then apply to graph theory:
Definition 4.4.1 An n-dimensional manifold is a space that is locally homeo-
morphic to R2. A surface is a two dimensional manifold. ♦

4.4.2 Graphs on the Torus
The torus is another word for the surface of a donut. There are some graphs
that can’t be on drawn on the sphere, but can be drawn on a torus. But we
need a way to represent drawing graphs on the torus just using a normal sheet
of paper -- it would be awkward and impractical to hand every student an
innertube or a donut at the exam to hand in with their papers.

We will do this by copying the videogame worlds we saw in the introduction.
Draw a square to represent the videogame screen, and then draw the graph

CHAPTER 4. GRAPHS ON SURFACES 72

inside the square, with the added proviso that if while drawing an edge of
the graph we hit the border of the square, we continue the edge at the same
point of the opposite side of the square. To make clear what we’re doing, it is
useful to draw arrows on the edges of the square to indicate how they are being
identified -- we put one arrowhead, pointing the same direction, on the left and
right edges, to indicate that they are being identified, with the tip end end
of one edge being marked to the tip end of the other, and the tail end being
matched to the tail end of the other. We draw two arrowheads on the top and
bottom edges, also pointing the same direction.

1 2

1 2

1 2

1 2

Figure 4.4.2 K5 and K6 drawn on a torus
This whole process is illustrated in Figure 4.4.2, where the complete graphs

on five and six vertices are drawn on the torus. We end with a few short tips
and tricks for trying to draw graphs on surfaces.

The first is that it can be complicated to keep track of edges that wrap
around the sides of the torus. If lots of them are wrapping around, it can be
easy to lose track of which edges are connecting to which others on the opposite
side. One way to make this clearer is to label the crossing point on one side
letters or numbers in order, and then on the opposite side label with the letters
and numbers going in the same direction as indicated by the arrow. Then you
know that the edge that crosses at letter c, say, on one side, picks up at c on
the other edge.

Another idea is to try to minimze the number of such crossings, and draw
as much of the graph as possible in the center of the square, and only a few
edges wrapping around the torus. One heuristic to follow is to work like we
did with the planarity algorithm for Hamiltonian graphs, and try to draw a
large cycle as a cycle in the square. Then, connect as many edges and extra
vertices as possible through the centre of the cycle, and only when you’ve ruled
that out try to wrap edges around the torus. This is the approach taken in the
drawing of K5 in Figure 4.4.2; the outside house is a Hamiltonian cycle, two
edges could be drawn in the center of the house, and then the remaining three
edges have no choice to be drawn wrapping around the torus.

The drawing of K6 using another trick that is worth explaining. It begins
with the drawing of K5 in black, and adds new stuff in red. It appears that four
new vertices have been added, one at each corner of the square. But actually,
when the edges are identified, the four corners of the sphere get identified into
one point on the torus. (Check this by visualizing what happens if you folded

CHAPTER 4. GRAPHS ON SURFACES 73

the paper up!). Placing one of the vertices on this graph on the corner can be
useful because then edges drawn from this vertex will not need to wrap around
the sides of the square.

4.4.3 Möbius strip
If you take a piece of paper and roll it up, identifying the two edges in the
usual way, one obtains the cylinder. But if instead you identify the edges in the
opposite way as usual, you one obtains a different surface called the Möbius
strip. The Möbius strip is famous for only having one side. In the drawing
shown below, if one of the ants walks all the way around the strip, when it
returns to where it starts it will be on the opposite side of the strip. Similarly,
whereas a cylinder has two boundary cirlces, the Möbius strip only has one.

Figure 4.4.3 M.C. Escher’s Möbius Strip II
The fact that the Möbius strip only has one boundary circle has the following

surprising consequence, that makes a great "party trick", is to make a Möbius
strip by taping up a strip of paper, and the cut it down the very middle of the
strip -- you wind up not getting two pieces of paper, but just one!

To actually represent graphs drawn on the Möbius strip, we work similarly
to what we did for the torus; we draw a square, and then we draw arrows on the
left and right edges to indicate that these edges are drawn together. However,
we have one arrow drawn up, and one arrow drawn down, to indicate that the
ends of the strip are glued together with a half twist. Since the top and bottom
of the Möbius strip do not get identified together at all, we do not draw any
arrows on them. Then, if an edge goes off one end the Möbius strip near the
top, it comes back on the opposite end near the bottom, and vice versa.

CHAPTER 4. GRAPHS ON SURFACES 74

a

x

b

y

c

z

1 2

2 1

a

x

b

y

c

z

1 2 3

3 2 1

Figure 4.4.4 Two drawings of K3,3 on the Möbius strip
Finally, we explain some heuristics about drawing graphs on surfaces, with

reference drawings of K3,3 on the Möbius strip. As discussed at the end of the
section of the torus, it can be useful to follow part of the reasoning used in
the planarity algorithm for Hamiltonian cycles when trying to draw graphs on
surfaces other than the sphere. That is, start with a large cycle in the graph --
for K3,3, with a, b, c red vertices, and x, y, z the blue vertices, we will use the
cycle axbycza. It may be that this is cycle is drawn in the plane as a circle, as
the in the left hand example; then we try to connect as many edges as possible
through the centre of the circle, and then do the rest on the outside, possible
wrapping around the Möbius strip.

But the Jordan Curve Theorem (that a circle has an inside and an outside)
only holds for the sphere -- on other surfaces, there are always curves where
this isn’t true. Whether of necessity, or choice, it might be that our large cycle
is drawn as one of these loops that doesn’t have an inside or an outside. On the
right hand side of Figure 4.4.4, we have drawn the cycle axbycz as the centre
of the Möbius strip.

Finally, we note that in general for a surface, there are multiple different
ways to draw curves; in Figure 4.4.5, we have drawn our chosen Hamiltonian
cycle as a curve that wraps twice about the Möbius strip. What happens if you
cut a physical Möbius strip along this line?

CHAPTER 4. GRAPHS ON SURFACES 75

a

x

b

y

c

z

1 2

2 1

Figure 4.4.5 A third drawing of K3,3 on the Möbius strip

4.5 Euler’s Theorem
This section cover’s Euler’s theorem on planar graphs and its applications.
After defining faces, we state Euler’s Theorem by induction, and gave several
applications of the theorem itself: more proofs that K3,3 and K5 aren’t planar,
that footballs have five pentagons, and a proof that our video game designers
couldn’t have made their map into a sphere without doing something very
strange.

4.5.1 Counting faces
A face of a planar drawing of a graph is a region bounded by edges and vertices
and not containing any other vertices or edges.

CHAPTER 4. GRAPHS ON SURFACES 76

Figure 4.5.1 shows a planar drawing of a two graphs. The left graph has
determines 5 regions, since we also count the unbounded region that surrounds
the drawing.

Figure 4.5.1 Two planar graphs
What happens if we compute the number of vertices minus the number of

edges plus the number of faces for these drawings? We have
6− 9 + 5 = 2
4− 6 + 4 = 2

While it might seem like a coincidence that this computation results in 2
for these planar drawings, there’s a more general principle at work here, and in
fact it holds for any planar drawing of any planar graph.

In fact, the number 2 here actually results from a fundamental property of
the plane, and there are a corresponding theorems for other surfaces. However,
we only need the result as stated above.
Theorem 4.5.2 Euler’s Formula. Let G be a connected planar graph with n
vertices and m edges. Every planar drawing of G has f faces, where f satisfies

n−m+ f = 2.
Proof. Our proof is by induction on the number m of edges. If m = 0, then
since G is connected, our graph has a single vertex, and so there is one face.
Thus n−m+ f = 1− 0 + 1 = 2 as needed. Now suppose that we have proven
Euler’s formula for all graphs with less than m edges and let G have m edges.
Pick an edge e of G. What happens if we form a new graph G′ by deleting e
from G? If G′ is connected, our inductive hypothesis applies. Say that G′ has
n′ vertices, m′ edges, and f ′ faces. Then by induction, these numbers satisfy

n′ −m′ + f ′ = 2.

Since we only deleted one edge, n′ = n and m′ = m − 1. What did the
removal of e do to the number of faces? In G′ there’s a new face that was
formerly two faces divided by e in G. Thus, f ′ = f − 1. Substituting these into
n′ −m′ + f ′ = 2, we have

n− (m− 1) + (f − 1) = 2 ⇐⇒ n−m+ f = 2.

Thus, if G′ is connected, we are done. If G′ is disconnected, however, we cannot
apply the inductive assumption to G′ directly. Fortunately, since we removed
only one edge, G′ has two components, which we can view as two connected

CHAPTER 4. GRAPHS ON SURFACES 77

graphs G′1 and G′2. Each of these has fewer than m edges, so we may apply
the inductive hypothesis to them. For i = 1, 2, let n′i be the number of vertices
of G′i, m′i the number of edges of G′i, and f ′i the number of faces of G′i. Then
by induction we have

n′1 −m′1 + f ′1 = 2 and n′2 −m′2 + f ′2 = 2.

Adding these together, we have

(n′1 + n′2)− (m′1 +m′2) + (f ′1 + f ′2) = 4.

But now n = n′1 + n′2, and m′1 +m′2 = m− 1, so the equality becomes

n− (m− 1) + (f ′1 + f ′2) = 4 ⇐⇒ n−m+ (f ′1 + f ′2) = 3.

The only thing we have yet to figure out is how f ′1 + f ′2 relates to f , and we
have to hope that it will allow us to knock the 3 down to a 2. Every face of G′1
and G′2 is a face of G, since the fact that removing e disconnects G means that
e must be part of the boundary of the unbounded face. Further, the unbounded
face is counted twice in the sum f ′1 + f ′2, so f = f ′1 + f ′2 − 1. This gives exactly
what we need to complete the proof. �

Remark 4.5.3 Alternative method of dealing with the second case.
In our proof of Euler’s theorem, the most complicated part was dealing with
the situation if the edge e disconnects our graph G when we remove it. In this
case, instead of deleting the edge e we can contract it -- that is, shrink it to a
point. This would have result in a graph that is still planar and still connected,
but with one less edge (e is no longer around), and one less vertex (the two
vertices e connects are now merged into one). The number of faces remains
unchanged. So the number of edges and the number of faces each decreased
by one, these two changes cancel out when we calculate n−m+ f , and hence
both are equal to two.

4.5.2 Applications of Euler’s theorem
By itself, Euler’s theorem doesn’t seem that useful: there are three variables
(the numbers of edges, vertices, and faces) and only one equation between them,
so there are still lots of degrees of freedom. For it to be particularly useful, we
want to have other relationships between these numbers. In many applications,
these relationships can come from handshaking.

Recall that Euler’s handshaking lemma said that∑
v∈G

d(v) = 2|E(G)|,

the sum of the degrees of all the vertices is twice the number of edges. If we
had some knowledge about the degrees of these vertices, we could get another
relationship between the number of vertices and the number of edges. For
example, if G is regular of degree k, then every vertex has degree k, and hence
the sum of all the degrees is just kn. Hence, handshaking would tell us that
kn = 2m, and we would have another relationship between the three variables
m,n and f .

Similarly, there is a handshaking between faces and edges. Let the degree of
a face be the number of edges that occur around it -- so, a triangle would have
degree three. Then, if we sum up the degrees of all the faces, we’re counting
each edge twice again -- once from the face on its left, and once from the face

CHAPTER 4. GRAPHS ON SURFACES 78

on its right. so we have ∑
f∈faces(G)

d(f) = 2|E(G)|

Note that this is just the usual vertex-edge handshaking for the dual graph.
Thus, vertex-edge and face-edge handshaking can potentially give us two

other sources of relationships between the numbers of vertices, edges, and
faces. Most applications of Euler’s theorem proceed by combining all three
relationships, as we shall see.
Lemma 4.5.4 K5 isn’t planar
Proof. We give a proof by contradiction. Suppose K5 was planar, and draw it
on the plane. We know that K5 has 5 vertices and

(5
2
)

= 10 edges, and so by
Euler theorem we know that any drawing of it must have 7 faces. We now use
edge-face handshaking to get a contradiction.

What could the degrees of the faces be? We don’t know for sure, but we
know that none of the faces could have degree one or two, as then the edges
would form a loop or multiple edges between two vertices, but K5 is simple.
Hence, every face must have d(f) ≥ 3. But then handshaking gives:

20 = 2e =
∑

d(f) ≥
∑

3 = 3 · 7 = 21

which is the desired contradiction, and so we conclude that K5 is not, in fact,
planar. �

It is a good exercise to adapt this proof to prove that K3,3 isn’t planar; one
needs to use the extra fact that K3,3 doesn’t have any three cycles (why not?)

We now prove that footballs have 12 pentagons. More precisely, use the
shorthand football graph to mean any trivalent graph drawn on the plane so
that every face is a pentagon or hexagon. Then we have:
Theorem 4.5.5 The football theorem. Let G be a football grpah drawn
on the plane, with P pentagonal faces, and H hexagonal faces. Then P = 12.
Proof. Let V,E, F denote the number of vertices, edges, and faces of G. Since
every face is a hexagon or pentagon, we have E = P +H, and substituting this
into Euler’s theorem gives:

V − E + P +H = 2 (4.5.1)

Now we turn handshaking. Since G is trivalent, every vertex has degree three,
and so vertex-edge handshaking becomes:

2E = 3V (4.5.2)

Finally, since there are P pentagonal faces and H hexagonal faces, face-edge
handshaking becomes:

2E = 5P + 6H (4.5.3)

Multiplying (4.5.1) by six gives:

6V − 6E + 6P + 6H = 12

Multiplying (4.5.2) by two gives 6V − 4E = 0, which we can use to eliminate
V , giving

−2E + 5P + 6H = 12

Finally, using (4.5.3) we can eliminate both E and H in one go, being left with
P = 12 as desired. �

CHAPTER 4. GRAPHS ON SURFACES 79

Finally, we prove that given some sensible restraints, video game designers
cannot make a world map that’s a sphere. A videogame world locally looks
like a square grid -- with every vertex and face having degree four.
Theorem 4.5.6 The videogame theorem. It is impossible to draw for a
graph to be drawn on the sphere so that every vertex and every face has degree
4.
Proof. Since every vertex has degree 4, vertex-edge handshaking gives 2E = 4V ,
and since every face has degree 4, face-edge handshaking gives 2E = 4F . Thus,
we see V = F = E/2, and plugging this in gives:

V − E + F = E/2− E + E/2 = 0

which contradicts Euler’s Theorem. Hence, such a graph on a sphere is not
possible. �

4.6 Exercises
1. Show that the Petersen graph has a cycle that uses all the vertices but one.

Give another proof that the Petersen graph is not planar by modifying the
planarity algorithm for Hamiltonian graphs to deal with this extra vertex.

2. Draw K4,4 and K7 on the torus.
3. Use the planarity algorithm to show that the given graph G is planar,

and draw a plane graph isomorphic to it. Explain how you might obtain
a non-planar graph by adding one extra edge, and for your non-planar
graph, find a subgraph that’s a subdivision of K5 or K3,3.

1

2
3

4

5

6
7

8

9

Figure 4.6.1 A Hamiltonian graph G
4.

CHAPTER 4. GRAPHS ON SURFACES 80

1
2

3

4

5
6

7

Figure 4.6.2 A Hamiltonian graph H
Let H be the graph shown in Figure 4.6.2. Show that H is not planar in

two ways: using the planarity algorithm, and using Kuratowski’s theorem.
Draw H on the Möbius strip and on a torus without the edges crossing.

5. A connected plane graph has faces of degrees 3 and 10 only, and every
vertex has degree at least 3. Prove that it must have fewer faces of degree
10 than of degree 3. If every vertex has degree 3, prove that the number
of faces of degree 10 must be a multiple of 3 and the number of faces of
degree 3 must be a multiple of 4.

As an example, how many faces of degree 3 and degree 10 does the
truncated dodecahedron possess? (A truncated dodecahedron is obtained
by sliving off each vertex of a dodecahedron to give a triangle.)

Chapter 5

Colourings

This chapter covers several types of colouring questions on graphs. The initial
motivation for these questions comes from an early question about colouring
the countries on maps so that adjacent countries have different colours.

5.1 Chromatic number
The study of graph colourings began with the colouring of maps. Usually
on a map, different regions (countries, counties, states, etc.) are visually
distinguished from each other by giving each one a different colour, with the
idea that adjance regions should have different colours so that boundaries can
be easily seen. For instance, in this old road map of England and Wales, each
county is coloured either red, yellow blue or green, and bordering counties have
different colours.

Figure 5.1.1 A historical example of a map colouring. Image courtesy Cartog-
raphy Associates under a creative commons license

Note that in the map above, only four colours are used. In 1852 Francis
Guthrie suggested that for any possible map drawn on a piece of a paper, four
colours would be enough. Guthrie’s conjecture wasn’t proven for more than a
hundred years later.

Let’s make Guthrie’s conjecture precise and connect it to graph theory.
Note that as in Example , it makes sense to work with essential the dual picture

81

http://www.davidrumsey.com/maps4669.html
https://creativecommons.org/licenses/by-nc-sa/2.0/

CHAPTER 5. COLOURINGS 82

to the map; we make the regions of the map into vertices, and we put an edge
between two regions if they share a vertex. Then we are lead to the following
definitions.
Definition 5.1.2 Colourings and Chromatic number. Let G be a graph.
A k-colouring (or sometimes vertex colouring) of G with k colours is an assign-
ment of one of k colours to each of the vertices of G so that adjacent vertices
have different colours.

More formally, a k-colouring is a function f : V (G)→ {1, . . . , k} so that if
v ∼ w than we have f(v) 6= f(w).

The chromatic number of a graph G, written χ(G), is the least number of
colours needed to colour the vertices of G so that adjacent vertices are given
different colours; that is, it’s the least k so that there exists a k-colouring of G.

♦
The most basic problem you will have to complete about these is the

following: given a graph G, determine its chromatic numberχ(G). Because the
chromatic number is the least number of colours with which it is possible to
colour G, showing that χ(G) = N will always require two steps:

1. Show that G admits a colouring with χ(G) = N − 1 colours

2. Show that G does not admit a colouring with fewer colours.

Example 5.1.3 Complete graph. What’s the chromatic number χ(Kn) of
the complete graph? Since every vertex is adjacent to every other vertex, any
two vertices need to have different colours, and so χ(Kn) ≥ n. But certainly if
we colour every vertex a different colour, then two adjacent vertices have the
same colour, and that’s a valid colouring of Kn, so χ(Kn) ≤ n. So χ(Kn) = n.

�

Example 5.1.4 Trees. Suppose that Tn is a tree on n ≥ 2 vertices. Then Tn

has an edge, and the two vertices on this edge must be different colours, and
so χ(Tn) ≥ 2. On the other hand, we can colour any tree with two colours as
follows: pick any vertex, and colour it blue; then pick any vertex next to it and
colour it red, then we can colour the vertices next to that blue, and colour the
vertices next to those red, and continuing on outwards from our starting vertex.
Hence, χ(Tn) ≤ 2 and so χ(Tn) = 2.

Another way of phrasing this is that along any path we colour the vertices
alternating red-blue-red-blue-red-blue. This wouldn’t work for a general graph,
because there may be two paths of different lengths between a pair of vertices
v and w. But in trees because there is always exactly one path between any
two vertices, and so once we colour one vertex, there’s a unique way to colour
all the others with two colours in this way. �

Example 5.1.5 Cyclic graphs Cn. As with trees, as long as n ≥ 2 the
graph has at least one edge, and thus has χ(Cn) ≥ 2. Can we colour Cn with
two colours?

If we could, the vertices would have to alternate red-blue-red-blue all the way
around. This works if n is even, but if n is odd then the vertex we started with
would have the same colour as the vertex we ended with, but they’re adjacent.
Thus, when n is odd we need at least three colours to colour the graph, but it’s
easy to do with three colours -- we can alternate red-blue-red-blue, but make
the very last vertex green, for instance.

Summarizing, we have:

χ(Cn) =
{

2 n odd
3 n even

CHAPTER 5. COLOURINGS 83

�
In fact, as thinking about the examples of trees and cycles should show, we’ve
already met one instance of the chromatic number -- a graph G is bipartite if
and only if χ(G) = 2, as follows immediately from the definition.

Another useful observation about the examples we’ve seen is that, since the
chromatic number χ(G) is the least number of colours needed to colour χ(G),
to show that χ(G) = s requires doing two things:

1. Showing that G can be coloured with s colours, and hence G ≤ s

2. Showing that G can’t be coloured with s− 1 colours, and hence G ≥ s

Example 5.1.6 The Wheel graph. The wheel graph Wn consists of an
n-cycle together with one additional vertex, that is connected to all vertices
of the n-cycle. Note that this with this convention, Wn confusingly has n− 1
vertices; other people may use a different convention where Wn has n vertices,
but then it only has a n− 1 vertices on the actual wheel.

Since the central vertex is connected to all other vertices, once we colour
it, we can never use that colour again. But deleting that vertex we just have
the n-cycle, and we already know the chromatic number of that. So we have
χ(Wn) = χ(Cn) + 1. �

Definition 5.1.7 We write ∆(G) for the maxium degree of any vertex in G:

∆(G) = max
v∈G

d(v)

♦

Theorem 5.1.8 We have χ(G) ≤ ∆(G) + 1
Proof. We need to show that we can colour any graph G with ∆(G) + 1 colours.
But we can just colour the vertices of G one by one in whatever order we want.
When we go to colour the ith vertex vi, we look at the d(vi) vertices adjacent
to vi. Some of them may not be coloured yet, in which case they don’t affect
anything, but for each vertex adjacent to vi that is coloured, we can’t use that
colour for vi.

So there are most d(vi) ≤ ∆(G) colours we have to avoid; if we have ∆(G)+1
colours to choose from we can always find one that hasn’t been used at a vertex
adjacent to vi. �

5.2 Chromatic index and applications
It is a natural twist of the definition of chromatic number to try to colour the
edges of a graph instead; the least number of colours needed is the called the
chromatic index. After introducing this concept and giving some examples, we
give some story problem type questions that boil down to finding either the
chromatic number or chromatic index.
Definition 5.2.1 Chromatic index. The chromatic index χ′(G) of a graph
G is the least number of colours needed to colour the edges of G so that any
two edges that share a vertex have different colours. ♦

Not that as with the chromatic number, since the chromatic index χ′(G)
is the minimum number of colours such that the edges can be coloured with
adjacent edges having different colours, to show χ′(G) = N typically requires
two steps:

1. Prove that the edges of G can be coloured with N colours

CHAPTER 5. COLOURINGS 84

2. Prove that the edges of G cannot be coloured with less than N colours

Example 5.2.2 The complete graph K4. Let’s find χ′(K4). Picking any
vertex v, there are three edges incident to v, and none of these edges can have
the same colour (as they all meet at v). Hence, we have χ′(K4) ≥ 3.

On the other hand, it is easy to colour the edges of K4 with three colours,
as seen below, and so χ′(K4) ≤ 3, and hence χ′(K4) = 3. �

Example 5.2.3 The complete graph K5. Now, let’s move on to K5. Again,
looking at any vertex we see all the edges adjacent to that vertex must be
different colours, and so we have χ′(K5) ≥ 4. Let’s try to colour the edges of
K5 with 4 colours.

Suppose we coloured the four edges adjacent to
the top vertex blue, green, red and purple, from
left to right, and now look at the bottom edge.
It is adjacent to edges coloured green and red,
and so must be blue or purple. By symmetry,
it’s equivalent to colour it either colour, so let’s
suppose it’s blue, giving us the following picture:

Now the edge on the right is adjacent to edges
coloured red, blue and purple, and so must be
green. But now we have a problem -- consider
the edges labeled x and y in the next drawing:

Both edges share vertices with edges coloured green, blue, and purple, and
hence each would need to be coloured red. But they also share a vertex with
each other, and so cannot both be coloured red. So we see χ′(K5) ≥ 5.

On the other hand, it is easy to colour the edges
of K5 with 5 colours: colour each edge in the
outside pentagon a different colour. For each
edge in the outside pentagon there will be a
unique edge in the inside star that does meet
that edge (the one "parallel" to it) -- draw that
edge the same colour. That results in the fol-
lowing colouring:

�

CHAPTER 5. COLOURINGS 85

In the examples above, we found lower bounds for χ′(G) by considering the
degrees of vertices; this argument easily adapts in general.

Theorem 5.2.4 For any graph G we have χ′(G) ≥ ∆(G)
Proof. Let v ∈ G be a vertex of maximal degree d(v) = ∆(G). Then none of
the ∆(G) edges incident to v can be coloured the same colour, and so we have
χ′(G) ≥ ∆(G) �

It turns out that this nearly determines the chromatic index χ′(G) -- it can
be at most one more than ∆(G):

Theorem 5.2.5 Vizing’s Theorem. For any graph G we have ∆(G) ≤
χ′(G) ≤ ∆(G) + 1
Proof. The lower bound was just proved in the previous theorem. The other
direction is more difficult. �

We now show how determining the chromatic number and chromatic index
can show up as part of story questions.

Suppose there are six friends, Alice, Bob, Charlie, Dora, Elizabeth and
Frank, and there is the following graph between then:

CHAPTER 5. COLOURINGS 86

A
X
B
X

C

X
X
D
X

X

E

X

X
X
F

CHAPTER 5. COLOURINGS 87

Here are two word problems related to G:

1. The friends want to divide into groups, but the edges indicate people
who currently annoy each other. What’s the least number of groups the
friends can divide into groups so that no group contains two people who
annoy each other?

2. The friends want to hold a snooker tournament, with everyone playing
three matches; the edges indicate pairs of friends who will play against
each other. If multiple matches can be played each day, but each person
can only be involved in one match a day, how many days are necessary
to hold the tournament?

The first case concerns the chromatic number -- each group of people will be
the people who have the same colour, and we don’t want vertices with an edge
between them to have the same colour.

The second case concerns the chromatic index -- the edges are the games
that are being played, and all edges that are the same colour will be played on
the same day.

Let us quickly compute the chromatic number and chromatic index of the
graph G above. To compute the chromatic number, we observe that the graph
contains a triangle, and so the chromatic number is at least 3. But it is easy
to colour the vertices with three colours -- for instance, colour A and D red,
colour C and F blue, and colur E and B green. So χ(G) = 3.

To compute χ′(G), since A has degree three we have χ′(G) ≥ 3. On the
other hand, it is easy to colour the edges with three colours -- for instance,
colour AB, CE and DF red, colour AE, CD and BF blue, and colour AC, BD
and EF green. So χ′(G) = 3 as well.

5.3 Introduction to the chromatic polynomial
For the chromatic number, we were asking whether or not it was possible
to colour the vertices of G with a given number of colours. The chromatic
polynomial extends this question, and asks the following. Suppose we have k
colours. How many different ways can we colour the vertices of G? It is not
clear that this should be a polynomial in k, and proving that it is in fact a
polynomial in k is the highlight of the section.

5.3.1 Definition and examples
Definition 5.3.1 The chromatic polynomial PG. The chromatic polyno-
mial PG of a graph G is the function that takes in a non-negative integer k
and returns the number of ways to colour the vertices of G with k colours so
that adjacent vertices have different colours. ♦

It is immediate from the definition of the chromatic polynomial that χ(G)
is the least positive number k such that χG(k) 6= 0.

It is not immediate from the definition of the chromatic polynomial that
it is, in fact, a polynomial. In fact, proving that will take a little bit of
work, and we postpone this until the end. First, we look at some examples of
the chromatic polynomial; in many cases it is possible to easily compute the
chromatic polynomial by working "vertex by vertex".
Example 5.3.2 The empty graph En. Recall that the empty graph En

has n vertices and no edges. To compute PEn(k) we need to count the number
of ways to colour the vertices with k colours. But since En has no edges, we can

CHAPTER 5. COLOURINGS 88

colour each of the n vertices any of the k colours; the choices are completely
independent. So PEn(k) = kn �

Example 5.3.3 The complete graph Kn. Let’s label the vertices v0, . . . , vn−1,
and colour them one by one in the given order. When we colour the first vertex
v0, no other vertices have been coloured, and we can use whichever of the k
vertice we like. However, when we go to colour v1 we note that it is adjacent to
v0, and so whatever colour we used for v0 we can’t for v1, and so we have k − 1
colours to choose for v1

Continuing in this way, we see that since all the vertices are adjacent, they
all most have different colours. So when we go to colour vi, we have already
coloured vo, . . . , vi−1 with i different colours, and we can’t use any of these to
colour vi, and so we have k − i choices to colour vi.

Putting it all together, we see that:

PKn
(k) = k · (k − 1) · (k − 2) · · · k − n+ 1

�

Example 5.3.4 Two triangles joined at a vertex.
Consider the graph G consisting of two triangles
joined at the right a vertex, shown at the right.
We can calulate PG(k) by working vertex by
vertex: there are k ways to colour vertex 1, but
then when we colour vertex 2 it can’t be the
same as vertex 1, and so there are k− 1 ways to
colour it. Vertex three is adjacent to both one
and two, so there are k − 2 ways to colour it,
and vertex 4 is adjacent to one coloured vertex,
vertex 3, so there are again k−1 ways to colour it,
and finally vertex 5 is adjacent to vertices 3 and
4 and so we have k− 2 ways to colour it.Putting
it together, we see PG(k) = k(k − 1)2(k − 2)2.

1

2

3

4

5

�

Example 5.3.5 Two triangles joined along an edge.
Consider the graph H consisting of two triangles
joined along an edge. shown at the right. We
can calulate PH(k) by working vertex by vertex:
there are k ways to colour vertex 1, but then
when we colour vertex 2 it can’t be the same as
vertex 1, and so there are k−1 ways to colour it.
Vertex three is adjacent to both one and two, so
there are k− 2 ways to colour it, and vertex 4 is
adjacent to vertices 2 and 3, which have different
colours as they are adjacent to each other, so
there are k − 2 ways to colour it. Putting it
together, we see PH(k) = k(k − 1)(k − 2)2

1

2
3

4

�

5.3.2 Gluing
What can we say about the chromatic polynomial of a graph G that’s the
disjoint union of two smaller graphs: G = G1 tG2?

We already covered the extreme case where G = En is just a disjoint union
of vertices; we could colour each vertex independently of the others, as there

CHAPTER 5. COLOURINGS 89

were no edges between them at all. A similar argument works in general to
give the following.

Proposition 5.3.6 Let G = G1 tG2 be a disconnected graph. Then PG(k) =
PG1(k)PG2(k)
Proof. A colouring of G with k colours gives a colouring of G1 with k colours and
a colouring of G2 with k colourings. Similarly, since G1,G2 are disconnected,
how we colour one will have no effect on what colourings are possible for the
other. Hence, colouring G is exactly the same as colouring G1 and G2 �

It gets more interesting if G is almost the disjoint union of two graphs, by
which we mean that G is the union of two subgraphs G1 and G2 that are nearly
disjoint -- perhaps they share a single vertex, or two vertices connected by an
edge. In these cases, there are nice "gluing" formulas relating the chromatic
polynomials of G,G1 and G2; as G1 ∩G2 grows more complicated it is still
possible to say something but the answer gets more complicated and not worth
it.
Proposition 5.3.7 Suppose G has two subgraphs G1 and G2, so that their
union is all of G, but their intersection is a single vertex v, i.e. G1 ∪G2 = G
and G1∩G2 = {v}. Then we have the following relation between their chromatic
polynomials:

PG(k) = 1
k
PG1(k)PG2(k)

Proof. As in the proof of colourings of disjoint unions, a colouring of G gives a
colouring of both G1 and G2 by restriction, but we don’t get any two colourings:
both G1 and G2 contain v, and our two colourings must both make v the same
colouring.

In the other direction, if we have colourings of G1 and G2 that have the
same colour at v, it is clear that we can glue them together to get a colouring
of G. So the question reduces to the following: given that we want vertex v
to have a fixed colour, how many colourings of G2 are there that colour v this
colour?

The k colours are completely interchangeable, however; we could just change
the names of each one. Thus, it is clear that there are as many colourings of
G2 where v is red as there are where v is blue as there are where v is any given
colour. Hence, if we have k colours to use, exactly 1/k of all colourings of G2
will ahve v any given colour, namely PG2(k)/k

Thus, to colour G with k colours, we first could first colour G1 in one of
the PG1(k) ways. This will give us a some fixed colour of v, and we saw above
that there are PG2(k)/k colourings of G2 where v has this colour, and so we
have the result. �

Example 5.3.8 Two triangles joined at a vertex, again. As an example,
we revisit our previous example. For G, two triangles joined at a vertex, we
have G1 ∼= G2 ∼= C3. Since C3 ∼= K3, we know PC3(k) = k(k− 1)(k− 2). Thus,
we have:

PG(k) = PC3(k)PC3(k)
k

= k2(k − 1)2(k − 2)2

k
= k(k − 1)2(k − 2)2

�

Proposition 5.3.9 Suppose G has two subgraphs G1 and G2, so that their
union is all of G, but their intersection is a single vertex edge e connecting two
vertices v and u, i.e. G1 ∪G2 = G and G1 ∩G2 = {e}. Then we have the

CHAPTER 5. COLOURINGS 90

following relation between their chromatic polynomials:

PG(k) = 1
k(k − 1)PG1(k)PG2(k)

Proof. The proof is extremely similar to that of the previous proposition. A
colouring of G gives us colourings of G1 and G2, but not any two colourings:
they need to match at both v and at u.

Now, v could be any of the k colours, but u, being adjacent to v, can’t be
the same colour, and so it has k − 1 possibilities given a choose of colour for
v. Thus, there are k(k − 1) ways to colour v and u, and all possibilities will
occur equally often within the colourings counted by PG2(k). Hence, given a
colouring of G1, there will be PG2(k)/[k(k − 1)] ways to extendthat colouring
to one of all of G, giving us the result. �

Example 5.3.10 Two triangles joined along an edge, again. As an
example, we revisit our previous example. For H, two triangles joined along an
edge, we can apply the theorm with G1 ∼= G2 ∼= C3. Thus, we have:

PH(k) = PC3(k)PC3(k)
k(k − 1) = k2(k − 1)2(k − 2)2

k
= k(k − 1)(k − 2)2

�

5.3.3 Case by case analysis
The meethods of gluing and working vertex by vertex make many chromatic
polynomials easy to calculate. Other graphs, however, are not amenable to our
gluing theorems, and require considering several cases when working vertex by
vertex.
Example 5.3.11 The chromatic polynomial of the cycle C4.Now consider the graph C4, shown at right, and
suppose we try to count the number of colourings
of it with k colours. Vertex 1 can be any of k
colours, and vertex 2 has k−1 possibilities -- any
colour except the one used for vertex 1. Moving
to vertex 4, we see it is just adjacent to 1 as
well, and so has k − 1 possibilities as well.

It becomes more difficult when we try to colour vertex 3. It is adjacent to
vertices 2 and 4, and so cannot be the same colour as either of these. However,
vertices 2 and 4 are not adjacent, and so we don’t know whether they have the
same colour or not. If vertices 2 and 4, have the same colour there are k − 1
possibilities for vertex 3, while if vertices 2 and 4 have different colours, there
are only k − 2 possibilties. Thus, we must count how many possibilities are in
each of these cases.

If we want vertices 2 and 4 to have the same colour, we can first colour
vertex 1 in k different ways, and then pick any of the remaining k−1 colours for
vertices 2 and 4. Then, to complete this to a colouring of C4, we have to colour
v3, which can be any of the k − 1 colours that aren’t the colour v2 and v4 are
coloured. Thus, the case where v2 and v4 have the same colour has k(k − 1)2

possibilities.
If we want vertices 2 and 4 to have different colours, then we can first colour

v1 any of k colours, colour v2 any of k − 1 colours. Now, when we go to colour
vertex 4 it can’t be the same colour as vertex 1 since they are adjacent, and
it can’t be the same colour as vertex 2 by our supposition. Vertices v1 and v2

CHAPTER 5. COLOURINGS 91

have different colours, and so this leaves k − 2 possibilities for v4. Thus there
are k(k − 1)(k − 2) possibilities to colour vertices 1, 2 and 4 so that 2 and 4
have different colours, and then there are k − 2 possibilities left for vertex 3,
giving k(k− 1)(k− 2)2 ways to colour C4 so that vertices 2 and 4 have different
colours.

Adding the two cases together, this gives:

PC4(k) = k(k − 1)2 + k(k − 1)(k − 2)2

= k(k − 1)[k − 1 + (k − 2)2]
= k(k − 1)(k2 − 3k + 3)

�

Example 5.3.12 The chromatic polynomial of C5.A similar case-by-case argument that we made
for C4 works for C5, except now we have a fur-
ther case to deal with. Using the vertex la-
bellings as shown to the right, note that Vertices
3 and 4 must have different colours. We will
consider three cases: Vertices 1, 3 and 4 all have
different colours, Vertex 1 has the same colour
as Vertex 3, and Vertex 1 has the same colour
as Vertex 4.

1

2

34

5

Case 1: 1, 3 and 4 have different colours. Then there are k(k − 1)(k − 2)
ways to colour vertices 1, 3, and 4, since they must all be different colours.
When we go to colour vertices 2 and 5, we see that they are each adjacent to
two vertices known to have different colours, and so there are k − 2 ways to
colour each of them. Thus in total, Case 1 contains k(k − 1)(k − 2)3 colourings.

Case 2: 1 and 3 have the same colour. Then there are k ways to choose this
colour, and k − 1 ways to choose a colour for vertex 2 (since 1 and 3 have the
same colour), and k − 1 ways to choose a colour for vertex 4. When we colour
vertex 5, we know that 1 and 4 must have different colours, and so we have
k − 2 ways to colour vertex 5. Thus in total, Case 2 contains k(k − 1)2(k − 2)
colourings.

By symmetry, we see that Case 3, where 1 and 4 have the same colour, is
identical to Case 2. Thus, putting the three cases together, we see that:

PC5(k) = k(k − 1)(k − 2)3 + 2k(k − 1)2(k − 2)
= k(k − 1)(k − 2)[(k − 2)2 + 2(k − 1)]
= k(k − 1)(k − 2)(k2 − 2k + 2)

�

5.4 Chromatic Polynomial continued
It may seem plausible that, if we consider enough cases, the case-by-case method
of computing the chromatic polynomial would work for any graph, no matter
how complicated. Assuming this, it would follow that the chromatic polynomial
PG(k) is in fact a polynomial. However, plausibility does not make a proof. In
this section we complete the proof elegantly using induction, but first need to
introduce the notion of deletion and contraction.

CHAPTER 5. COLOURINGS 92

5.4.1 Deletion-Contraction
Definition 5.4.1 Deletion. Let G be a graph, and let e ∈ G be a graph.
Then we use G \ e to denote the graph with the same vertex set as G, and with
all the same edges, except the edge e deleted. ♦

Definition 5.4.2 Contraction. Let G be a simple graph, and let e ∈ G be an
edge between vertices v and w. Then G/e, the graph with e contracted. More
precisely, G/e is the simple graph with vertices V (G/e) = V (G) \ {v, w} ∪ e.
Two non-e vertices are adjacent in G/e if and only if they were adjacent in G,
and a vertex y is adjacent to e in G if and only if it was adjacent to v or w in
G. ♦

Formally, Definition 5.4.2 seems formidable, but intuitively it is not as bad
as the definition looks: we are changing G by making the whole edge e into
one vertex. This may create multiple edges if a vertex was adjacent to both v
and w, and if so we simply remove any duplicate edges.
Lemma 5.4.3 Deletion-Contraction. Let G be a simle graph, and let
e ∈ G be any edge. Then we have:

PG(k) = PG\e(k)− PG/e(k)
Proof. Since G and G\e have the same vertex, it is not too difficult to compare
their colourings. Any valid colouring of G will give a colouring of G \ e, but not
every colouring of G \ e arises this way -- in G, colourings require that v and w,
the two endpoints of e, have different colours, but there is no such requirement
for G \ e. So, we want to count the colourings of G \ e where v, w have the
same colour. But these are just the colourings of G/e: given a colouring of
G/em we can get a colouring of G by giving most vertices the same colour,
and giving both v, w whatever colour e was. By definition, we see that v and w
will have the same colour in this colouring; and given any colouring of G \ e
where v, w have the same colour we can get a colouring of G/e by colouring e
the colour that v, w were. �

Example 5.4.4 Chromatic polynomial of C4, again. Let us compute
PC4(k) a different way as an illustration of how deletion-contraction works. No
matter which edge of C4 we pick, C4 \ e will be the path graph P4, which is
a tree, and hence we know has chromatic polynomial k(k − 1)3. Similarly, we
have that C4/e = C3, and we know PC3(k) = k(k − 1)(k − 2). Hence we have:

PC4(k) = PC4\e(k)− PC4/e(k)
= PP4(k)− PC3(k)
= k(k − 1)3 − k(k − 1)(k − 2)
= k(k − 1)

(
(k − 1)2 − (k − 2)

)
= k(k − 1)(k2 − 3k3 + 3)

�
Since G \ e and G/e both have fewer edges than G, it follows that we can

repeatedly apply Deletion-Contraction to G until we have no edges left at all,
and hence that Deletion-Contraction can compute the chromatic polynomial of
any graph. In practice, this can be quite a complicated and formidable way to
compute, but in the next section we show that this method can elegantly prove
the chromatic polynomial is always a polynomial, and in some cases give nice
formulas for this polynomial.

CHAPTER 5. COLOURINGS 93

5.4.2 Chromatic polynomial is a polynomial
We first prove that the chromatic polynomial is actually a polynomial, but
iterative use of deletion-contraction.
Theorem 5.4.5 Let G be a simple graph with n vertices and edges. Then
PG(k) is a polynomial of degree n in k, and moreover:

PG(k) = kn −mkn−1 + lower order terms
Proof. The proof follows from induction on m, the number of edges, using
deletion-contraction for the inductive step.

As a base case, we take m = 0. Then if G has n vertices it must be the
empty graph En. We have seen that PEn(k) = kn, which indeed has the correct
form needed for the theorem.

Now, for the inductive step, we assume that for any graph H with ` < m
edges and n vertices, we have PH(k) = kn − `kn−1 + lower order terms.

Now let G be any graph with m edges. We can assume m > 0, as the case
where m = 0 is the base case; this means that G has at least one edge e. We
apply deletion-contraction to the edge e.

If we delete e, the resulting graph G \ e still has n vertices, but it now has
m− 1 edges. Since this is less than m, we know by the inductive hypothesis
that

PG\e(k) = kn − (m− 1)kn−1 + lower order terms

If we contract e, the resulting graph G/e has n− 1 vertices, and we don’t know
exactly how many edges it has (contracting it may create multiple edges that
need to be deleted), but it has at most m− 1 edges, and so by the inductive
hypothesis we know that

PG/e(k) = kn−1 + lower order terms

Thus, applying deletion-contraction we have:

PG(k) = PG\e(k)− PG/e(k)
= kn − (m− 1)kn−1 + lower order terms−

(
kn−1 + lower order terms

)
= kn −mkn−1 + lower order terms

which is what we needed to show to finish the inductive step. �
We end by showing that sometimes the inductive method of iteratively

using deletion-contraction can compute explicit formulas for the chromatic
polynomials of an infinite family of graphs.
Lemma 5.4.6 Chromatic polynomial of Cn. Let Cn be the cycle graph
on n vertices. Then:

PCn(k) = (k − 1)n + (−1)n(k − 1)
Proof. We will induct on n. As a base case, when n = 3, we have:

(k − 1)3 + (−1)3(k − 1) = k3 − 3k2 + 3k − 1− (k − 1)
= k3 − 3k2 + 2k
= k(k − 1)(k − 2)
= PC3(k)

For the inductive step, we assume that the proposition holds for n− 1 and want
to prove that it holds for n. We will compute PCn(k) by deletion-contraction.

CHAPTER 5. COLOURINGS 94

If we delete any edge of Cn, we get the path graph Pn, and we know

If we contract any edge of Cn, we get Cn−1, and we know by the inductive
hypothesis that

Plugging these into deletion-contraction gives:

PCn
(k) = PCn\e(k)− PCn/e(k)

= PPn
(k)− PCn−1(k)

= k(k − 1)n−1 −
(
(k − 1)n−1 + (−1)n−1(k − 1)

)
= (k − 1)n−1(k − 1)− (−1)n−1(k − 1)
= (k − 1)n + (−1)n(k − 1)

as was desired. �

5.5 Exercises
1. Eleven football games are to be arranged among eight teams A to H as

follows.

A plays F,G,H D plays C,E,G F plays H
B plays E,F,H E plays G

If no team can play more than once a week, what is the minimum number
of weeks needed to schedule all the games? Justify your answer.

2. Eight students A--H each have to choose two courses from a list of eight
options 1--8. They choose as follows.

A : 1, 2 B : 2, 6 C : 3, 5 D : 4, 6
E : 5, 7 F : 7, 8 G : 5, 8 H : 3, 8

You have to timetable the examinations in such a way that no student has
to take two exams on the same day. What is the smallest number of days
you need, and in how many ways can you fit the exams into these days?
Describe one way.

3. Eight foods A to H are to be put in refrigerated compartments in a
supermarket. Because of various regulations, some cannot share the same
compartment with others, as indicated by crosses in the following table.

A × −− −− × × −− ×
B × −− −− × −− ×

C × −− × × ×
D × × × −−

E × × −−
F −− −−

G ×
H

Determine the smallest number of compartments needed to display the
foods and find a possible placing of the foods in the compartments.

CHAPTER 5. COLOURINGS 95

4. For the graph G shown below, find χ(G) and χ′(G)

1
2

3

4

5
6

7

Figure 5.5.1 The graph G

5. Find the chromatic polynomial of the following three graphs. You should
use the chromatic polynomial of the four cycle as a given: χC4(k) =
k(k − 1)(k2 − 3k + 3)

CHAPTER 5. COLOURINGS 96

6. Let e be any edge of Kn. Derive the chromatic polynomial of Kn \ e by
colouring ’vertex by vertex’. Also find the chromatic polynomial of Kn/e,
and then check that the deletion-contraction formula holds in this csae.

Now let f 6= e be another edge of Kn. What’s the chromatic polynomial
of Kn \ {e, f}? Does it matter whether e and f share a vertex?

	Introduction
	A first look at graphs
	Degree and handshaking
	Graph Isomorphisms
	Instant Insanity
	Trees
	Exercises

	Walks
	Walks: the basics
	Eulerian Walks
	Hamiltonian cycles
	Exercises

	Algorithms
	Prüfer Codes
	Minimum Weight Spanning Trees
	Digraphs
	Dijkstra's Algorithm for Shortest Paths
	Algorithm for Longest Paths
	The Traveling Salesperson Problem
	Exercises

	Graphs on Surfaces
	Introduction to Graphs on Surfaces
	The planarity algorithm for Hamiltonian graphs
	Kuratowski's Theorem
	Drawing Graphs on Other surfaces
	Euler's Theorem
	Exercises

	Colourings
	Chromatic number
	Chromatic index and applications
	Introduction to the chromatic polynomial
	Chromatic Polynomial continued
	Exercises

