
MAS332 Complex Analysis

Dr F.M.Hart (Office K12)

1 Complex numbers

1.1 Revision and Notation

1. The complex plane C = {z : z = x + iy with x and y ∈ R}. Since a real x can be

written as x+ i0, it can be viewed as being complex also. Obviously R ⊂ C.

We know that R is an ordered set, i.e., if x, y ∈ R then precisely one of the following

relations is satisfied (i) x < y, (ii) x = y, (iii) x > y.

The set C, however, is NOT AN ORDERED SET, i.e., it is not possible to

define the inequality z1 < z2 sensibly for z1, z2 ∈ C and so inequalities such as

1 + i > 0, z > 0, and −5− 6i < 10 + 37i. . . are MEANINGLESS.

Inequalities can only be used with complex num-
bers if they are essentially inequalities between
real numbers, e.g., we could write |z1| < |z2|, or
Re z1 < Re z2 etc.

2. If you have one equation involving complex numbers, you can equate real and imag-

inary parts and get two equations involving real numbers.

3. (a) If z = x + iy, then z = x− iy is the complex conjugate of z. (In some books,

this is denoted z∗.)

(b) |z| =
√

(x2 + y2) is the modulus of z.

(c) Re(x+ iy) = x, Im(x+ iy) = y ( NOT iy ) .

Note that |z| = |z − 0| is the distance between z and the origin. Similarly, |z − a|
is the distance between z and a.

Thus the inequality |z| < |w| for z, w ∈ C, means that the point z is closer to the

origin than w. For example |2− 2i| < | − 3− i|.

4. |z|2 = z × z (both being x2 + y2). This is useful as | | is hard to manipulate. For

example,
1

z
=

1

z × z
× z =

x− iy
x2 + y2

.
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N. B. |z|2 = zz = x2 + y2 and so it is NOT the same
as z2 = (x + iy)2 = x2 + 2ixy − y2 unless z is real.

5. If z 6= 0, then the line joining 0 to z makes an angle θ with the positive real axis

R+. θ is called a value of arg z, as is θ+ 2π, θ+ 4π, . . . , and θ− 2π, θ− 4π, . . . . So

arg z has infinitely many values and is NOT a function.

6. The polar form is z = x + iy = reiθ = r(cos θ + i sin θ). Here r = |z| ≥ 0 and θ is

any value of arg z. This is OK since (using eiα = cosα + i sinα),

ei(θ+2nπ) = cos(θ + 2nπ) + i sin(θ + 2nπ) = cos θ + i sin θ = eiθ

and so the ambiguity in θ does not give different values for eiθ. The form z = reiθ is

also often called modulus-argument form. I shall use either the term “polar form”

or “modulus-argument form”. You should be used to both names.

We recall that if

z = r(cos θ + i sin θ), w = s(cosφ + i sinφ)

then

zw = rs(cos(θ+φ) + i sin(θ+φ)) and, if s 6= 0,
z

w
=

r

s
(cos(θ−φ)+i sin(θ−φ)) .

So modulus-argument form is particularly useful when multiplying and dividing

complex numbers, finding powers and roots of complex numbers.

7. De Moivre’s Theorem: Let θ ∈ R and n ∈ N. Then

(cos θ + i sin θ )n = (cosnθ + i sinnθ)

and (cos θ + i sin θ)
1
n has precisely n different values, given by

cos ( θ
n

+ 2kπ
n

) + i sin ( θ
n

+ 2kπ
n

) (k = 0, 1, 2, · · · (n− 1)).

In terms of the eiθ notation, we have (eiθ)
1
n has precisely n different values, given

by

ei(
θ
n

+ 2kπ
n ) (k = 0, 1, 2, · · · (n− 1)) . �

x
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For example, the five values of 1
1
5 are

1 , cos(2π
5

)+i sin(2π
5

) , cos(4π
5

)+i sin(4π
5

) , cos(6π
5

)+i sin(6π
5

) , cos(8π
5

)+i sin(8π
5

) .

These five values of the fifth root of unity are represented in an Argand diagram by

five points evenly spaced round the unit circle.

y

−1 1

2π
5

2π
5

2π
5

2π
5

2π
5

If the nth roots of a complex number r(cos θ + i sin θ) (r > 0) are required, then

these are

n
√
r (cos ( θ

n
+ 2kπ

n
) + i sin ( θ

n
+ 2kπ

n
)) (k = 0, 1, 2, · · · (n− 1)) ,

where n
√
r is the positive real number a such that an = r.

For example, the roots of the equation z3 + 8 = 0 are the cube roots of − 8 .

They are

2(cos (π
3
) + i sin (π

3
)) , −2 , 2(cos (5π

3
) + i sin (5π

3
)) ,

since −8 = 8(cos π + i sin π).

8. Recall that

e2πi = 1, eiπ = e−iπ = −1, eπi/2 = i,

e−πi/2 = −i, e2πi/3 = −1/2 + i
√

3/2, e−2πi/3 = −1/2− i
√

3/2.

1.2 Examples

1. Express

√
3 + i

1− i
(a) in the form x+ iy and (b) in modulus-argument form. Hence

find the values of cos(5π/12) and sin(5π/12).

2. Find (
√

3 + i)48 and find the values of (
√

3 + i)1/48.

3. Evaluate
∣∣∣ a− b
1− ab

∣∣∣ , when a, b ∈ C, a 6= b, and |a| = 1.

4. Find the fourth roots of −1 and hence express z4 + 1 as a product of two real

quadratics.
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Solutions

1. Multiply the numerator and the denominator by the complex conjugate of the de-

nominator to obtain,

(a)

√
3 + i

1− i
=

√
3 + i

1− i
× 1 + i

1 + i
=

(√
3− 1

2

)
+ i

(√
3 + 1

2

)
. (1)

(b)

√
3 + i

1− i
=

2e
πi
6

√
2e−

πi
4

=
√

2e
5πi
12 =

√
2 cos

(
5π

12

)
+ i
√

2 sin

(
5π

12

)
. (2)

Equating real and imaginary parts,

cos

(
5π

12

)
=

√
3− 1

2
√

2
, sin

(
5π

12

)
=

√
3 + 1

2
√

2
,

using (1) and (2).

2. Use modulus-argument form reiθ if you have to take powers. Thus(√
3 + i

)48

=
(

2e
πi
6

)48

= 248e8πi = 248 .

Also, one value of (
√

3+i)
1
48 is 2

1
48×e πi

288 . Write α = 2
1
48×e πi

288 , say and let ω = e
2πi
48 .

Then α, αω, αω2,. . . ,αω47 are the 48 values of the 48th roots of
√

3 + i.

3. We use aa = 1 to obtain∣∣∣∣ a− b1− ab

∣∣∣∣ =

∣∣∣∣∣ a− b1− b
a

∣∣∣∣∣ = |a|
∣∣∣∣a− ba− b

∣∣∣∣ = 1.

Note In questions like this avoid using real and imaginary parts if possible.

4. Since −1 = eπi the fourth roots of −1 are eπi/4, e−πi/4, e3πi/4 and e−3πi/4. Hence

x4 + 1 = (x− eπi/4)(x− e−πi/4)(x− e3πi/4)(x− e−3πi/4)

= [x2 − (eπi/4 + e−πi/4)x+ 1][x2 − (e3πi/4 + e−3πi/4)x+ 1]

= [x2 − 2x cos
π

4
+ 1][x2 − 2x cos

3π

4
+ 1]

= [x2 −
√

2x+ 1][x2 +
√

2x+ 1]

using

(eiθ + e−iθ) = (cos θ + i sin θ) + (cos (−θ) + i sin (−θ))
= (cos θ + i sin θ) + (cos θ − i sin θ) = 2 cos θ.

MAS332 4



1.3 Inequalities

First note that

|Re z| ≤ | z| ≤ |Re z|+ | Im z| and | Im z| ≤ | z| ≤ |Re z|+ | Im z|

since |x| ≤ (x2 + y2)
1
2 ≤ (|x|2 + 2|x||y| + |y|2)

1
2 = |x| + |y| and a similar inequality holds

for |y| . There is a clear geometrical interpretation of these inequalities: the length of one

of the sides of a right-angled triangle is less than the length of the hypotenuse and the

length of the hypotenuse is less than the sum of the lengths of the two shorter sides.

Theorem 1.1 The triangle inequalities state that if z and w ∈ C, then

||z| − |w|| ≤ |z + w| ≤ |z|+ |w|,

||z| − |w|| ≤ |z − w| ≤ |z|+ |w|.

Proof. Consider

|z + w|2 = (z + w)(z + w)

= (z + w)(z + w)

= zz + (zw + zw) + ww

= zz + 2 Re (zw) + ww

≤ |z|2 + 2|zw|+ ww

= |z|2 + 2|z||w|+ |w|2

= (|z|+ |w|)2

Take positive square roots to obtain

|z + w| ≤ |z|+ |w| . (1)

If we replace w by −w in equation (1), we obtain

|z − w| ≤ |z|+ | − w| = |z|+ |w| . (2)

From equation (1), we have |z| = |(z − w) + w| ≤ |z − w|+ |w|, giving

|z − w| ≥ |z| − |w| . (3)

Interchanging z and w in equation (3) gives

|z − w| = |w − z| ≥ |w| − |z| (4)
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Equations (3) and (4) together give

|z − w| ≥ | |z| − |w|| . (5)

Finally, replacing w by −w in equation (5) to obtain

|z + w| ≥ | |z| − |w|| . (6)

�

Note The inequalities for |z + w| and |z − w| have the same form. Your choice of

which part of the triangle inequalities to use in any application is governed by the form of

the inequality you need to prove rather than whether you are looking at |z+w| or |z−w|.
The next set of examples illustrate this. Be very wary when dealing
with inequalities involving moduli of fractions and, in
particular, be careful how you treat the denominator.

1.4 Examples

1. Show that
1

3
≤
∣∣∣∣2z2 − 1

z + 2

∣∣∣∣ ≤ 3

for all z on |z| = 1.

2. Show that 2 ≤ | 3z + 4i| ≤ 8 for all z with | z + 1| ≤ 1.

Solutions

1. Using the triangle inequalities, we see that

| 2z2 − 1| ≤ 2|z2|+ 1 = 2 + 1 = 3

and

| 2z2 − 1| ≥ | |2z2| − 1 | = 2− 1 = 1 ,

for all z such that |z| = 1. Thus

1 ≤ | 2z2 − 1| ≤ 3 (1)

for all z such that |z| = 1. Similarly, for |z| = 1,

1 = 2− 1 = | |z| − 2| ≤ |z + 2| ≤ |z|+ 2 = 1 + 2 = 3.

Thus, for all z with |z| = 1,

1

3
≤
∣∣∣∣ 1

z + 2

∣∣∣∣ =
1

|z + 2|
≤ 1 . (2)

It follows from (1) and (2) that

1

3
≤
∣∣∣∣2z2 − 1

z + 2

∣∣∣∣ ≤ 3 ,

for all complex numbers z such that |z| = 1.
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2. First write 3z + 4i = 3(z + 1) + (4i − 3). (i.e. Write the given expression

in terms of something that you know something about.) Then, using the

triangle inequalities,

|3z + 4i| = |3(z + 1) + (4i− 3)| ≤ |3(z + 1)|+ |4i− 3| = 3|z + 1|+ 5 ≤ 3 + 5 = 8

|3z + 4i| = |3(z + 1) + (4i− 3)| ≥ | |3(z + 1)| − |4i− 3| | = 5− 3|z + 1| ≥ 5− 3 = 2 ,

giving

2 ≤ |3z + 4i| ≤ 8.

2 Special functions

2.1 The exponential

Possible definitions of ez (or exp(z)):

1. ez =
∞∑
n=0

zn

n!
. The power series has infinite radius of convergence and so is defined

everywhere on C.

2. ez = lim
n→∞

(
1 +

z

n

)n
, again extending real result

(
1 +

x

n

)n
→ ex as n→∞.

3. ez = ex(cos y + i sin y) if z = x+ iy.

We will use (3) as our initial definition. After the section on power series we will, however,

assume (1) (without proof) when we feel like it.

Definition 2.1 Let z = x+ iy. Then the exponential function is defined by

ez = ex(cos y + i sin y). �

Sometimes I write exp z in place of ez. This has the advantage of emphasizing that the

exponential function is a function rather than a power. In some circumstances it is also

easier to read e.g. exp z2 is clearer than ez
2
.

Theorem 2.2

1. If z = x + iy, then | ez| = ex = eRe z , and y is a value of arg(ez) . The numbers

y + 2nπ (n ∈ Z) give all the values of arg (ez) ,

2. For all z,w ∈ C, ez+w = ez × ew ,

3. The exponential function ez is periodic with period 2πi,
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4. For all z ∈ C, ez 6= 0 and 1
ez

= e−z.

Proof.

1. Let z = x+ iy, then from the definition,

ez = ex(cos y + i sin y)

and this is modulus-argument form for ez, as ex > 0 for all real x. Thus

| ez| = ex = eRe z and one value of the argument of ez is y .

2. For all z, w ∈ C,

ezew = ex(cos y + i sin y)× eu(cos v + i sin v)

= ex+u[(cos y cos v − sin y sin v) + i(cos y sin v + sin y cos v)]

= ex+u(cos(y + v) + i sin(y + v))

= ez+w .

3. For all z ∈ C,

ez+2πi = ez × e2πi

= ez(cos(2π) + i sin(2π))

= ez .

So the exponential function has period 2πi and takes the same value at all points

z + 2nπi (n ∈ Z).

4. We know that e0 = 1, so

ez × e−z = ez−z = e0 = 1 . (1)

Now ez and e−z are two complex numbers whose product is 1 and so neither of them

is zero. Thus ez 6= 0 for all z ∈ C. Hence, using (1),

e−z =
1

ez
.

�
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2.2 More functions

We define:

cosh z = 1
2
(ez + e−z), sinh z = 1

2
(ez − e−z),

cos z = 1
2
(eiz + e−iz), sin z = 1

2i
(eiz − e−iz).

These functions are all defined on C, and the formulae generalise our real knowledge. It

is immediate that cos(−z) = cos z (so cos is an even function) and sin(−z) = − sin z (so

sin is an odd function). Similarly, cosh is even and sinh is odd.

Also,

cos z = cosh(iz), i sin z = sinh(iz)

which show that cos and cosh are identical apart from a twist of 90 degrees in the variable.

Familiar identities like

sin(z + w) = sin z cosw + cos z sinw, sin2 z + cos2 z = 1

can easily be proved.

DANGER: the second identity does NOT imply that
| sin z| ≤ 1 and | cos z| ≤ 1 for all z ∈ C. In fact, both sin
and cos are unbounded on C.

For example, let z = iy, where y ∈ R. Then | cos z| = | cos iy| = | cosh y| = cosh y → ∞
as y →∞. Thus | cos z| is unbounded on C.

2.3 Examples

1. Find M such that
∣∣∣ez + cos z

6 + z

∣∣∣ ≤M for all z with |z| = 1.

2. Find the zeros of cos z.

Solutions

1. Let z = x+ iy. Then

| cos z| = |1
2

(eiz + e−iz) | ≤ 1
2
| eiz |+ 1

2
|e−iz |

= 1
2
eRe(iz) + 1

2
eRe(−iz) = 1

2
e−y + 1

2
ey = cosh y .

Hence, for all z with |z| = 1,

| cos z| ≤ cosh y ≤ cosh 1 .

Using the triangle inequalities, we see that for |z| = 1,

| ez + cos z| ≤ | ez|+ | cos z| ≤ eRe z + cosh y ≤ e1 + cosh 1.
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and

| 6 + z| ≥ | 6| − |z| = 5 giving

∣∣∣∣ 1

6 + z

∣∣∣∣ =
1

| 6 + z|
≤ 1

5
.

Hence ∣∣∣∣ez + cos z

6 + z

∣∣∣∣ ≤ e+ cosh 1

5
,

for all z such that |z| = 1.

2. Put z + x+ iy. Then

cos z = cos(x+ iy) = cosx cos(iy)− sinx sin(iy) = cosx cosh y − i sinx sinh y

and

| cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y

= cos2 x(1 + sinh2 y) + (1− cos2 x) sinh2 y

= cos2 x+ sinh2 y

cos z = 0, implies that

cos2 x+ sinh2 y = 0 i.e. cosx = 0 = sinh y ,

since x and y are real numbers. Hence x = π
2

+ nπ and y = 0 . Thus the zeros of

cos z are at z = π
2

+ nπ (n = 0, ±1, ±2, · · · ) i.e the only zeros of cos z are the

familiar ones on the real axis.

Further, as cos(iz) = cosh z, for all complex numbers z, we deduce that the zeros

of cosh z are at iπ
2

+ inπ (n = 0, ±1, ±2, · · · ). Thus all the zeros of cosh z are on

the imaginary axis.

Definition 2.3 The Remaining Trigonometric and Hyperbolic functions are defined by:

tan z = sin z
cos z

(z 6= (2n+1)π
2

), cot z = cos z
sin z

(z 6= nπ),

sec z = 1
cos z

(z 6= (2n+1)π
2

), cosec z = 1
sin z

(z 6= nπ),

tanh z = sinh z
cosh z

(z 6= (2n+1)πi
2

), coth z = cosh z
sinh z

(z 6= nπi),

sech z = 1
cosh z

(z 6= (2n+1)πi
2

), cosech z = 1
sinh z

(z 6= nπi).

2.4 Complex logarithm

The exponential function ex is a strictly increasing positive function on R and so we can

define an inverse function ln x on (0,∞). Thus, for all positive real numbers x , we have

e lnx = x .

Now let us see if we extend this idea to define the complex logarithm. Suppose z 6= 0.

Any complex number w such that ew = z is defined to be a value of log z . Then for all
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integers n, ew+2nπi = ew = z and we see that if w is a value of log z then w + 2nπi is also

a value of log z for all integers n. Thus if log z has a value, then it has an infinite number

of values and log z is NOT a function.

For z 6= 0 write z = reiθ with r > 0 and write log z = w = u+ iv. Then ew = z and so

reiθ = z = ew = eu(cos v + i sin v) .

Hence r = |z| = |eu(cos v + i sin v)| = eu. Thus Re (log z) = u = ln |z|. We also see that

the values of v are θ + 2nπ. Thus the possible values of Im (log z) are θ + 2nπ.

Thus, if z 6= 0 and z = reiθ with r > 0, then

log z = ln r + iθ + 2nπi = ln |z|+ i arg z,

where arg z has infinitely many values, so that log z also has infinitely many values and

any pair differ by an integral multiple of 2πi .

Since ew 6= 0 for all complex numbers w, we see that log z is not defined when z = 0 .

(Note that, for z 6= 0 we use log z for the complex logarithm and ln |z| for the real logarithm

of the positive real number |z| . Hence ln is defined on R+ and log z is defined on C\{0} .)

2.5 Examples

1. Find all the values of

(i) log(−e), (ii) log(
√

3− i).

2. Find all the roots of the equation e2z + 1 + i = 0.

3. Find all roots of the equation cosh z = −i.

Solutions

1. (i) In modulus-argument form −e = e(cos π+ i sin π) and so a value of log(−e) is

ln | − e|+ i arg(−e) = 1 + iπ. All the values of log(−e) are therefore given by

1 + i(π + 2nπ) (n ∈ Z) .

y

−e
x

π

MAS332 11



(ii) In modulus-argument form
√

3 − i = 2[cos(−π
6
) + i sin(−π

6
) ]. A value of

log(
√

3− i) is, therefore, ln 2− iπ
6

. All values of log(
√

3− i) are given by

ln 2− iπ
6

+ 2nπi .

y

x

√
3

−i

−π
6

√
3− i

2. Since e2z + 1 + i = 0, we see that

e2z = −1− i .

Thus the required values of 2z are the values of log(−1− i)

Now the values of log(−1− i) are

ln
√

2 − 3πi

4
+ 2nπi (n = 0,± 1,± 2, · · · )

and so the required solutions are

z = 1
2

ln
√

2 − 3πi
8

+ nπi (n = 0,± 1,± 2, · · · ) .

y

x

−3π
4

−1− i

3. Using cosh z = 1
2
(ez + e−z), the equation cosh z = −i becomes

ez + e−z = −2i i.e. e2z + 2iez + 1 = 0.

This is a quadratic equation in ez with roots ez = −i±
√
i2 − 1 = −i± i

√
2, by the

quadratic formula. Thus the required values of z are the values of log(−i ± i
√

2).
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y

x

−π
2

π
2

(
√

2− 1)i

−(
√

2 + 1)i

Now

log(−i − i
√

2) has values ln(
√

2 + 1)− πi
2

+ 2nπi (n ∈ Z) ,

and

log(−i + i
√

2) has values ln(
√

2− 1) + πi
2

+ 2nπi

= − ln(
√

2 + 1) + πi
2

+ 2nπi (n ∈ Z)

(since ln(
√

2− 1) = − ln(
√

2 + 1) because (
√

2− 1) = 1/(
√

2 + 1).)

Thus the required solutions are

z = ±
[
ln(
√

2 + 1)− πi
2

+ 2nπi
]

(n ∈ Z) .

3 Simple integrals of complex-valued functions

We want to develop calculus for complex-valued functions. Surprisingly, it easier to begin

with integration rather than differentiation. So that is what we will do.

In the second year you met line integrals for functions of two variables and it is only a

very short step from this to integrals for complex-valued functions. Of course we will need

to be careful about the choice of curve over which to take the integral. Hopefully, the

section below is really only a reminder of ideas you met in the second year.

3.1 Types of curves

A curve in the plane can be defined parametrically by x = x(t), y = y(t), (a ≤ t ≤ b),

where x and y have continuous derivatives x′ and y′ on [a, b]. Write z = x + iy and

z(t) = x(t) + iy(t) (a ≤ t ≤ b). Then we define z′(t) to be x′(t) + iy′(t) for (a ≤ t ≤ b).

For example,

(eit)′ = (cos t+ i sin t)′ = − sin t+ i cos t = i(cos t+ i sin t) = ieit

as expected.

We say that z′ is continuous on [a, b] (or we say that z(t) is continuously

differentiable on [a, b]) when x′ and y′ are both continuous on [a, b] .
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Definition 3.1 A curve γ is defined by a continuously differentiable complex-valued

function z of a real variable t on [a, b] (a, b ∈ R). So we write

γ : z = z(t) (a ≤ t ≤ b). �

A curve has orientation defined by the parametrization and different parametrizations

can produce the same oriented subset of C. The direction of the curve γ is the

direction in which the parameter t increases so it goes from z(a) = x(a) + iy(a)

to z(b) = x(b) + iy(b). I will, therefore put an arrow to denote direction on a curve,

whenever I draw a diagram containing one.

Our curves have a continuously turning tangent and we also suppose there are one-

sided tangents at each of the end points.

A curve will have length
∫ b
a
|z′(t)| dt which is finite as |z′| is continuous on [a, b].

Recall that an element of arc length δs = [(δx)2 + (δy)2]
1
2 and hence the length of γ is

∫
γ

δs =

∫ b

a

[(
dx

dt

)2

+

(
dy

dt

)2
] 1

2

dt =

∫ b

a

|z′(t)| dt .

Definition 3.2 A path is a finite union of curves (joined successively at end points). A

contour is a path whose final point is the same as its initial point. A simple contour

is a contour without self-intersections.

Examples of paths and contours.

1. If z lies on a circle centre a and radius r, then |z− a| = r i.e. z− a can be written

in modulus-argument form as z − a = reit for some t ∈ R, giving z = a+ reit.

Thus the circle Cr, with centre a and radius r, described in the anticlockwise direc-

tion can be given by

z = a+ reit (0 ≤ t ≤ 2π).

Cr

r
a

z

t

Cr is a simple contour

2. Suppose z0 6= z1. The straight line segment from z0 to z1 can be given by

z = z(t) = tz1 + (1− t)z0 (0 ≤ t ≤ 1). (1)
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For, clearly the expression on the RHS of (1) is linear in t and so describes a straight

line segment L. Moreover L goes from z(0) = z0 to z(1) = z1.

Note. Relation (1) can be rearranged to give z = z(t) = z0 + t(z1− z0) (0 ≤ t ≤ 1).

z1

z0

L is a path but it is not a contour

3. (i) The semi-circle given by z = 2eit (0 ≤ t ≤ π) (shown below) is a path but it is

not a contour.

C ′

2−2

(ii) The figure of eight shown below is a contour, but it is not a simple contour.

(iii) The triangular contour shown below is a simple contour.

z2

z1

z0
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3.2 Line integrals

Definition 3.3 Let f be continuous on a region containing the path γ. Let γ be given

by z = z(t), a ≤ t ≤ b. Then ∫
γ

f(z)dz =

∫ b

a

f(z(t))z′(t)dt. �

Notes.

1. On [a, b], f(z(t))z′(t) is a continuous complex valued function of a real variable t,

except for the finitely many values of t corresponding to corners. This is enough to

show that the integral exists. (No proof.)

2. Whichever parametrization of γ is taken, you get the same value of
∫
γ
f(z)dz. (No

proof.)

3. Let γ be a path. Then we define the path −γ to be the path γ described with the

opposite orientation (i.e. −γ is the path γ taken in the opposite direction ). Thus∫
−γ
f(z)dz = −

∫
γ

f(z)dz .

We assume this, and also easy results like:∫
γ

(f1(z) + f2(z))dz =

∫
γ

f1(z)dz +

∫
γ

f2(z)dz∫
γ

(cf(z))dz = c

∫
γ

f(z)dz (c ∈ C)∫
γ1+γ2

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz,

where we use γ1 + γ2 to mean the path γ1 followed by the path γ2.

3.3 Examples

1. Evaluate
∫
γ
zdz where γ is the union of the paths

γ1 : z = x (0 ≤ x ≤ 1) and γ2 : z = 1 + iy (0 ≤ y ≤ 1).

2. Let R > 0 and γ : z = Reit (0 ≤ t ≤ 2π). Let k be any integer with k ≥ 2.

Evaluate

(i)

∫
γ

1

z
dz (ii)

∫
γ

1

zk
dz.
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3. Evaluate
∫
γ
zdz, where γ = γ1 + γ2 + γ3 where

γ1 : z = x (−1 ≤ x ≤ 1)

γ2 : z = eit (0 ≤ t ≤ π/2)

γ3 : z = i+ (−1− i)t (0 ≤ t ≤ 1)

(Note: if a parametrisation is needed for a line segment from a point z1 to the origin,

it is often easier to parametrise the line segment in the opposite direction, from 0

to z1, and then to use the relation
∫
γ

= −
∫
−γ.)

Solutions

1. Since γ = γ1 + γ2, where

γ1 : z = x (0 ≤ x ≤ 1) and γ2 : z = 1 + iy (0 ≤ y ≤ 1),

1

1 + i

γ1

γ2

and z is continuous on γ we see that∫
γ

zdz =

∫
γ1

zdz +

∫
γ2

zdz =

∫ 1

0

xdx+

∫ 1

0

(1 + iy)idy = 1
2

+
(
i− 1

2

)
= i.
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2. (i) The curve γ is given by z = Reit (0 ≤ t ≤ 2π).

−R R

γ

Hence∫
γ

1

z
dz =

∫ 2π

0

1

Reit
Rieitdt = 2πi.

(Note that d
dt

(eit) = ieit.)

(ii) Since k is an integer with k ≥ 2,∫
γ

1

zk
dz =

∫ 2π

0

1

Rkeikt
Rieitdt =

1

Rk−1

∫ 2π

0

ie−(k−1)itdt =
1

Rk−1

[
ie−(k−1)it

−i(k − 1)

]t=2π

t=0

= 0

as e−(k−1)i2π = e0 and
∫
eiatdt = eiat

ia
.

Note the answer is independent of both R and k.
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3. Now γ = γ1 + γ2 + γ3 where

γ1 : z = x (−1 ≤ x ≤ 1),

γ2 : z = eit (0 ≤ t ≤ π
2
),

γ3 : z = i+ (−1− i)t (0 ≤ t ≤ 1)

γ2

γ1

γ3

1−1

and z is continuous on γ.

Hence∫
γ1
zdz =

∫ 1

−1
xdx = 0 ,∫

γ2
zdz =

∫ π
2

0
e−it dz

dt
dt =

∫ π
2

0
e−itieit dt = iπ

2
,∫

γ3
zdz =

∫ 1

0
(−i− t+ it)(−1− i) dt = −(1 + i)

∫ 1

0
(−i− t+ it)dt = i

and therefore, ∫
γ
zdz =

∫
γ1
zdz +

∫
γ2
zdz +

∫
γ3
zdz

= 0 + iπ
2

+ i = i
(
π
2

+ 1
)
.

(Note: to parametrise a line segment from a point z0 to the origin, it is often easier

to parametrise the line segment in the opposite direction, from the origin to the

point z0, and then to use the relation
∫
γ

= −
∫
−γ.)

4 Definitions about sets

Before defining the concept of a derivative, we need to say what type of sets we are going

to use.

Definition 4.1 A neighbourhood of z0 ∈ C is a set of the form {z ∈ C : |z− z0| < δ} for

some δ > 0. (i.e. it is an open disc about z0.) �

z0
.
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Definition 4.2 A set D ⊆ C is said to be open if each point z0 ∈ D has a neighbourhood

contained in the set. (A set is open if all its boundary points are “missing”.) �

Examples.

• The disc D = {z ∈ C : |z| < 1} is open, since Dz0 = {z ∈ C : |z − z0| < 1
2
(1− |z0|)}

is a neighbourhood of z0 lying in {z ∈ C : |z| < 1} whenever |z0| < 1.

y

−1 1

z0

.

• The set {z ∈ C : |z| < 1} ∪ {1} is not open, since any neighbourhood of 1 contains

points with modulus greater than 1. Such points are outside the set.

y

−1 1
.

Definition 4.3 A non-empty open set D ⊆ C is connected if given any points z, w ∈ D,

we can find a path γ ⊂ D with initial point z and final point w. (i.e. D is “all in one

piece”) �

Definition 4.4 A non-empty, open, connected set is called a region. �

Definition 4.5 A region D is said to be simply connected if it has no “holes”, i.e., if ev-

ery point in the interior of any simple contour in D is contained in D. �

Note. In order to decide whether a set is a region, you need to check whether the set is

(i) non-empty, (ii) open and (iii) connected.
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4.1 Examples

1. The half-plane H = {z ∈ C : Re z > a} is a non-empty, open, connected set and it

is also simply connected.

y

a
Re z > a

H is a simply connected region.

2. The annulus A = {z : r < |z − a| < R} (with 0 < r < R) is a non-empty, open,

connected set, but it is not simply connected since the set {z ∈ C : |z − a| ≤ r} is

a hole (more formally, if r < t < R, the points in the interior of {z : |z − a| = t}
are all the points with |z − a| < t, but not all of these points are contained in the

annulus itself).

y

x

a
r R

A is a region, but it is not a simply connected region.

3. The punctured plane C\{a} is a non-empty, open, connected set but it is not simply

connected (as it is easy to write down a contour with a in its interior, but a is not

in the original set).

The punctured plane is a region, but it is not a simply connected region.
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4. The cut plane C∗ = C \ {z ∈ C : z is real and z ≥ 0} is a non-empty, open,

connected set and it is also simply-connected.

y

The cut plane C∗ is a simply-connected region.

5 Differentiation

5.1 Limit

Definition 5.1 Let f be defined on some punctured neighbourhood of z0 [i.e., it is defined

on {z ∈ C : 0 < |z− z0| < δ} for some δ > 0]. We use the phrase “f(z)→ l as z → z0” to

mean that |f(z)−l| → 0 as |z−z0| → 0. �

Thus f(z)→ l as z → z0 along any path approaching z0 and the limit l, does not depend

on the path chosen. Since |f(z) − l| and |z − z0| are real valued no new principles are

involved.

Note that we are demanding that a 2-dimensional limit exists, i.e., the limit exists in

all directions towards z0.

For example,
|z|
z

has no limit as z → 0, as
|z|
z

= 1 for z real and positive, and −1 for

z real and negative. Hence there is no l such that
|z|
z
→ l as z → 0.

Note that to prove that a limit does not exist, it is sufficient to find 2 paths

going to z0 along which the limits exist and are not equal.

In view of the inequalities

|u− u0|

|v − v0|
≤ |w − w0| = |u+ iv − (u0 + iv0)| ≤ |u− u0|+ |v − v0|

we see that if w = u+ iv and w0 = u0 + iv0 then w → w0 as z → z0 if and only if u→ u0

and v → v0 as z → z0.

Continuity.

MAS332 22



Definition 5.2 If f is defined on a neighbourhood (no longer punctured) of z0 and

f(z)→ f(z0) as z → z0, then f is said to be continuous at z0. �

In complex function theory, continuity is not really important in its own right. It normally

occurs as a consequence of differentiability. The concept of differentiability is central to

this course.

5.2 Differentiation

Definition 5.3 Let f be a complex valued function of the complex variable z. Suppose

that f is defined on a neighbourhood of z0. We say that f is differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0

exists. We call the limit the derivative of f at z0 and denote it by f ′(z0).

Definition 5.4 The function f is said to be analytic on a region D if f is differentiable

at all points of D.

So far, we have only defined analytic for regions (which, by definition, are open sets).

Definition 5.5 If z0 is a point, we say that f is analytic at z0 if f is analytic on some

region containing z0. �

Thus the statement that f is analytic at z0 means that f is not only differentiable at

z0, but it is also differentiable at all points within some open disc with non-zero radius

centred at z0 i.e. f is differentiable at z0 and also at all points sufficiently close to z0.

Open sets are the natural domains of analytic functions since a function must be de-

fined on a neighbourhood of each point of D.

The demand that a 2-dimensional limit exists means that some apparently innocent

functions may not be differentiable. Fortunately, however, some familiar results continue

to hold.

Familiar results from R which are true in C:

• differentiability implies continuity;

• the sum and product of two differentiable functions is differentiable and the familiar

rules for derivatives of sums and products continue to hold;

• for all non-negative integers n, zn is differentiable and its derivative is nzn−1 ;
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• an analytic function f(w(z)) of an analytic function is analytic on some region and

the chain rule
df

dz
=

df

dw

dw

dz
holds. (This will be assumed without proof.)

• if the functions f and g are both differentiable at the point z0 AND g(z0) 6= 0,

then the quotient f(z)
g(z)

is differentiable at z0 and its derivative at z0 is

f ′(z0) g(z0)− f(z0) g′(z0)

[g(z0)]2
.

If g(z0) = 0, then the quotient f(z)
g(z)

is not defined at z0 and the quotient is NOT

differentiable at z0.

Note. Analytic functions are central to Complex Analysis. In order to

find where functions involving quotients are analytic, you will need to

find, first of all, where they are differentiable. You will frequently find

that above will help you decide. So DON’T forget it.

The definition of differentiability for complex functions resembles that for real functions.

However the consequences of differentiability for complex functions are far reaching as

we will see in later sections. Analytic functions are very, very well behaved indeed. For

example, it is not enough to ask for their real and imaginary parts to be “nice functions”.

Example. Let f(z) = Re z i.e. f(z) = f(x + iy) = x. Then there is no point of C at

which f is differentiable.
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Solution. Firstly, let z → z0 along a line parallel to the real axis.

y

y0

x0

z0 z

Write z0 = x0 + iy0 and z = x+ iy0, where x 6= x0. Then

f(z)− f(z0)

z − z0

=
x− x0

x− x0

= 1

Thus, as z → z0 along a line parallel to the real axis,

f(z)− f(z0)

z − z0

→ 1. (1)

Secondly, let z = x0 + iy → z0 along a line parallel to the imaginary axis.

y

y0

x0

z0

z

Write z0 = x0 + iy0 and z = x0 + iy, where y 6= y0. Then

f(z)− f(z0)

z − z0

=
x0 − x0

i(y − y0)
= 0

Thus, as z → z0 along a line parallel to the imaginary axis

f(z)− f(z0)

z − z0

→ 0 . (2)

From (1) and (2), we see that
f(z)− f(z0)

z − z0

does not tend to any limit as z → z0. Hence the function f is not differentiable at z0.

This is true for all points z0 ∈ C.

Despite its innocent appearance, this is an example of a function which is continuous

everywhere but nowhere differentiable.

It can not be differentiated because its real and imaginary parts are not related in the

correct way. In fact they must be related by the Cauchy-Riemann equations if a function

is to be differentiable.
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5.3 The Cauchy-Riemann Equations

(Cauchy (1789–1857) and Riemann (1826–1866).)

Theorem 5.6 (Cauchy-Riemann Equations) Let f(z) = f(x+iy) = u(x, y)+iv(x, y),

where u and v are real valued functions, and let z0 = x0 + iy0. If f is differentiable at z0,

then u and v satisfy the relations

ux = vy, uy = −vx (∗)

at (x0, y0),

i.e.
∂u

∂x
=

∂v

∂y
,

∂u

∂y
= − ∂v

∂x
(∗)

at (x0, y0).

In the complex form this result becomes; “If the function f is differentiable at z0, then

i∂f
∂x

= ∂f
∂y

at z0.
′′ �

The relations (*) above are called the Cauchy-Riemann Equations.

Proof. As f is differentiable at z0, f must be defined on a neighbourhood of z0 and we

can compute df
dz

at z0 by letting z → z0 in any direction.

Firstly, let z → z0 (along a line parallel to the real axis).

y

y0

x0

z0 z

Write z0 = x0 + iy0 and z = x+ iy0, where x 6= x0. Then

f(z)− f(z0)

z − z0

=
[u(x, y0) + iv(x, y0)]− [u(x0, y0) + iv(x0, y0)]

x− x0

=
u(x, y0)− u(x0, y0)

x− x0

+ i
v(x, y0)− v(x0, y0)

x− x0

.

→ ux(x0, y0) + ivx(x0, y0) as x→ x0 .

Thus

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= ux(x0, y0) + ivx(x0, y0) . (1)

Secondly, let z = x0 + iy → z0 (along a line parallel to the imaginary axis).
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y

y0

x0

z0

z

Write z0 = x0 + iy0 and z = x0 + iy, where y 6= y0. Then

f(z)− f(z0)

z − z0

=
[u(x0, y) + iv(x0, y)]− [u(x0, y0) + iv(x0, y0)]

i(y − y0)

=
u(x0, y)− u(x0, y0)

i(y − y0)
+
v(x0, y)− v(x0, y0)

y − y0

.

→ −iuy(x0, y0) + vy(x0, y0) as y → y0 .

Thus

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= −iuy(x0, y0) + vy(x0, y0) . (2)

Equating real and imaginary parts in (1) and (2), gives

ux(x0, y0) = vy(x0, y0), vx(x0, y0) = −uy(x0, y0)

i.e.
∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y

at (x0, y0).

Equations (1) and (2) can be written as

f ′(z0) = [ux + ivx]x=x0,y=y0 =
[
∂f
∂x

]
x=x0,y=y0

,

f ′(z0) = [−iuy + vy]x=x0,y=y0 = −i
[
∂f
∂y

]
x=x0,y=y0

.

Hence, at z0 = x0 + iy0,
∂f

∂x
= −i∂f

∂y
.

This is the complex form of the Cauchy-Riemann equations. �

Notes:

1. The two forms of the Cauchy-Riemann equations are equivalent, as taking i∂f
∂x

= ∂f
∂y

,

gives i(ux + ivx) = uy + ivy. Equating real and imaginary parts then gives (*).

2. There are four versions of f ′. If f = u+ iv is analytic:

f ′(z) = ux + ivx = ux − iuy = vy − iuy = vy + ivx.
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3. Let f(z) = Re z = u+ iv, and let z = x+ iy. Then f(z) = f(x+ iy) = x and so

u(x, y) = x and v(x, y) = 0 .

Thus ux 6= vy at all points of C. Hence Re z is not analytic on C (in fact it is not

differentiable at any point of C). This is an example of a complex function which

is continuous at every point of C and is not differentiable at any point.

4. The Cauchy-Riemann equations are axis dominated - they only make a statement

about lim
z→z0

f(z)− f(z0)

z − z)

as z → z0 in 2 directions, viz. along lines parallel

to the real and imaginary axes. But we know that the derivative exists at z0 if

lim
z→z0

f(z)− f(z0)

z − z0

exists for all approaches to z0. Hence we cannot expect that the

converse of this theorem will hold.

Indeed, there are examples in which the Cauchy-Riemann equations hold at a point

z0 but the function is not differentiable there.

Example. Let z0 = 0, and let f be defined by

f(z) =

1 on the axes

0 elsewhere.

Write f(z) = u(x, y) + iv(x, y), where u, v are real-valued so that

v(x, y) = 0, u(x, 0) = 1 u(0, y) = 1

for all real x, y. Then

ux(0, 0) = lim
x→0

[
u(x, 0)− u(0, 0)

x

]
= 0 .

Similarly

uy(0, 0) = 0, vx(0, 0) = 0 , vy(0, 0) = 0,

and the C-R equations are satisfied at the origin. But f is not even continuous at

the origin and so it can not be differentiable there.

Thus the fact that the Cauchy-Riemann equations are satisfied at a certain

point is NOT SUFFICIENT to guarantee differentiability at that point.
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5.4 Examples

1. Prove that, f analytic on C and Re f constant on C implies that f is constant on

C.

2. Prove that, f analytic on C and f ′ = 0 on C implies that f is constant on C.

3. Let f be analytic on C and suppose that | f | = c, a constant on C. Prove that f is

constant on C.

Solutions.

1. We use the standard notation, f(z) = f(x+ iy) = u(x, y) + iv(x, y), where u, v are

real-valued.

In this example, we are told that u = Re f is constant. So

ux = uy = 0

everywhere. In addition, the function f is analytic in C and so the Cauchy-Riemann

equations

ux = vy vx = − uy

are satisfied everywhere. Hence

vx = vy = 0

everywhere, and so v is independent of x and y. Thus v is constant, so f = u + iv

is constant.

2. Again use the standard notation and recall that there are four different forms for f ′

in terms of u and v. Since f ′ = 0 on C. We see that

0 = f ′ = ux − iuy = vy + ivx

everywhere. Hence ux = uy = vx = vy = 0 everywhere and so u and v are constant,

and so f = u+ iv is constant.

3. If c = 0, then clearly f(z) = 0 for all z ∈ C.

If c > 0, write f = u+ iv. Then |f(z)|2 = [u(x, y)]2 + [v(x, y)]2 = c2. Taking partial

derivatives with respect to x and y:

2uux + 2vvx = 0

2uuy + 2vvy = 0 .
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Since f is analytic in C, u and v satisfy the C-R equations and so the above equations

give,

uux − vuy = 0

uuy + vux = 0 .

Eliminating uy, we get

(u2 + v2)u2
x = 0, i.e. c2u2

x = 0 .

Hence ux = 0 (as c > 0). Substitute back to find that uy = 0. Thus u = Re(f) is

constant, so f is constant by the first example.

5.5 Special Functions

We have seen that non-negative powers of z can be differentiated at every point of C and

so polynomials are analytic in C. It would really be rather dull if we had to restrict the

rest of the course to polynomials. Fortunately, there are some more analytic functions

readily available. Our problem is to prove that they can be differentiated. Remember

that it is NOT sufficient to prove that the Cauchy Riemann equations are satisfied. We

can, however, prove the following:

Theorem 5.7 Let f(z) = f(x + iy) = u(x, y) + iv(x, y), where u and v are real valued

functions, and let z0 = x0 + iy0. If

(i) u and v have continuous first order partial derivatives at (x0, y0)

and

(ii) u and v satisfy the Cauchy-Riemann equations at (x0, y0),

then f is differentiable at z0.

Note. Condition (i) in the above theorem is too strong. It could be replaced by the

condition that u and v are differentiable functions of two variables. This together with

(ii) are both necessary and sufficient for differentiability of f .

Now let us apply this theorem to show that the exponential function is differentiable

everywhere. Put z = x+ iy, then

ez = ex(cos y + i sin y) = u(x, y) + iv(x, y) ,

where

u(x, y) = ex cos y and v(x, y) = ex sin y .

Hence

ux = ex cos y , uy = −ex sin y , vx = ex sin y , vy = ex cos y
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and so the first order partial derivatives ux, uy, vx, vy are continuous and satisfy the

Cauchy-Riemann equations ux = vy, vx = −uy everywhere. The exponential function is,

therefore, differentiable everywhere and

d

dz
(ez) = ux + ivx = ex cos y + iex sin y = ex(cos y + i sin y) = ez . (1)

Thus the exponential function is analytic in C.

Now, for all z,

d

dz
(cos z) =

d

dz

[
1
2

(eiz + e−iz)
]

= 1
2

(ieiz − ie−iz) = − 1
2i

(eiz − e−iz) = − sin z .

Thus cos z is analytic in C and its derivative is − sin z. Similarly sin z, cosh z, sinh z are

all analytic in C and they have the familiar derivatives

d

dz
(sin z) = cos z,

d

dz
(cosh z) = sinh z,

d

dz
(sinh z) = cosh z,

everywhere.

5.6 Harmonic functions

Definition 5.8 A real valued function u(x, y) on a region D ⊆ R2 which has

1. continuous second order partial derivatives, and

2. which satisfies Laplace’s equation

∇2u = uxx + uyy = 0

on D is said to be harmonic on D.

Theorem 5.9 If f = u + iv is analytic on a region D, then u and v are harmonic on

D. �

Proof. (Proper proof is Corollary 2 of Theorem 9.3) We assume that ux, uy, vx and vy

have second order partial derivatives with respect to x and y and that uxy = uyx,

vxy = vyx. Then, using the Cauchy-Riemann equations,

∇2u =
∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

(
∂u

∂x

)
+
∂

∂y

(
∂u

∂y

)
=

∂

∂x

(
∂v

∂y

)
+
∂

∂y

(
−∂v
∂x

)
=

∂2v

∂x∂y
− ∂2v

∂y∂x
= 0

and

∇2v =
∂2v

∂x2
+
∂2v

∂y2
=

∂

∂x

(
∂v

∂x

)
+
∂

∂y

(
∂v

∂y

)
=

∂

∂x

(
−∂u
∂y

)
+
∂

∂y

(
∂u

∂x

)
= − ∂2u

∂x∂y
+
∂2u

∂y∂x
= 0 .

�
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Question. Given a function u which is harmonic on a region D, can we find a function

f analytic on D with u = Re f?

Answer. If D is simply connected, then the answer is yes. (Proof omitted.)

Possible Methods for finding f when u is given.

First check that u is harmonic.

Then:

Method (a). Find v using vx = −uy and vy = ux. Then form u + iv and express it

in terms of z only (i.e., not x and y, nor Re z, z, |z|, · · · ).

Method (b) [Preferable]. Form ux − iuy, and express in terms of z to get f ′(z), and

then integrate to get f . (Remember that we found, in the section on the Cauchy-Riemann

equations, that one form for f ′(z) is ux − iuy.)
The advantage of method (b) is that v is ignored.

5.7 Examples

In each of the following cases decide whether there is a function f analytic on C such that

Re f = u. When f exists, find an expression for f(z) in terms of z.

1. u(x, y) = sin(x2 + y2) on R2.

2. u(x, y) = sinh x cos y − coshx sin y on R2.

Solutions.

1. Use the standard notation. In this case u(x, y) = sin(x2 + y2) on C and so

∇2u =
∂2

∂x2
[sin(x2 + y2)] +

∂2

∂y2
[sin(x2 + y2)]

=
∂

∂x
[2x cos(x2 + y2)] +

∂

∂y
[2y cos(x2 + y2)]

= 2 cos(x2 + y2)− 4x2 sin(x2 + y2) + 2 cos(x2 + y2)− 4y2 sin(x2 + y2)

= 4 cos(x2 + y2)− (4x2 + 4y2) sin(x2 + y2)

6= 0

So u is not harmonic, and so no f exists. �
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2. We have u(x, y) = sinh x cos y − coshx sin y on R2 and so

∇2u =
∂2

∂x2
[sinhx cos y − coshx sin y] +

∂2

∂y2
[sinhx cos y − coshx sin y]

=
∂

∂x
[coshx cos y − sinhx sin y] +

∂

∂y
[− sinhx sin y − coshx cos y]

= sinhx cos y − coshx sin y − sinhx cos y + coshx sin y

= 0

So u is harmonic. As C is simply connected, the stated result shows that f exists,

analytic on C with Re f = u. We use Method (b) to find f . We know that

f ′ = ux − iuy
= coshx cos y − sinhx sin y + i sinhx sin y + i coshx cos y

which we need to express in terms of z only. It may not be immediately obvious

how to do this. If we could even make a sensible guess as to the answer it would be

straightforward to check whether the guess was valid or not. But an educated guess

may be very hard to make. Perhaps what we need is a clever little trick to help us

on our way!!

Clever little trick. If I can write down a formula giving f ′(x) in terms of x. Then

this formula with every x replaced by z should, hopefully, at least provide a sensible

guess for f ′(z) in terms of z.

Now I can obtain my formula for f ′(x) by taking my expression for f ′(x + iy) and

substituting in y = 0.

If this method yields a result, I can eliminate any element of doubt by checking that

the answer I obtain does, indeed, satisfy all the given conditions.

In this example,

f ′(x+ i0) = (1 + i) coshx

So there’s a chance that f ′(z) = (1 + i) cosh z, and then f(z) = (1 + i) sinh z+ c for

some constant c. Let’s try that, and hope that Re f = u.

Check: Using f(z) = (1 + i) sinh z + c gives,

Re f = Re [(1 + i) sinh(x+ iy) + c]

= Re [(1 + i)(sinhx cosh iy + coshx sinh iy) + c]

= Re [(1 + i)(sinhx cos y + i coshx sin y) + c]

= sinhx cos y − coshx sin y + Re (c)

= u+ Re (c)
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So this f works, so long as the real part of c is 0, i.e. f(z) = (1 + i) sinh z + ia,

where a ∈ R.

In fact, all functions f on C with Re f = u are of the form (1 + i) sinh z + ia (a ∈ R) as

the following theorem shows.

Theorem 5.10 Suppose that f and g are analytic on a region D and Re f = Re g on D.

Then f = g + ia (a ∈ R).

Proof. Write h = f−g. Then h is analytic on the region D. Using the standard notation,

we write h(z) = h(x+ iy) = u(x, y) + iv(x, y). Hence

u(x, y) = Re (h(x+ iy)) = Re (f(x+ iy))− Re (g(x+ iy)) = 0

on D. Using the Cauchy-Riemann equations (or one of our previous examples) we see

that, v is constant. So h = ia for some a ∈ R because Re (h(z)) = 0 on D. �

From now on, we treat f as the main function, and do not split into Re (f) and Im (f).

There will be more results on differentiation but these will be found using integration.

Analysis in R uses differentiation and integration separately, and unites them in the

Fundamental Theorem of Calculus. There is, however, NOTHING SIMILAR IN COM-

PLEX ANALYSIS.

5.8 Examples

1. The function f is analytic in C and its real and imaginary parts u, v satisfy the

relation u = 1 + v. Show that f is constant.

2. The function f is analytic in C and its real and imaginary parts u and v satisfy

uev = 12 at all points of C. Prove that f is constant.

Solutions.

1. Since u(x, y) = 1 + v(x, y) for all real numbers x, y, differentiating with respect to

x and with respect to y gives

ux = vx (1) uy = vy (2)

everywhere. Now f is analytic in C and so u and v satisfy the Cauchy-Riemann

equations

ux = vy (3) uy = −vx (4)

everywhere. Using equations (1), (4), (2) and (3) gives

ux = vx = −uy = −vy = −ux
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everywhere. Hence ux = 0 everywhere and therefore,

ux = uy = 0 and vx = vy = 0

everywhere. Thus u and v are constant and so f = u+ iv is constant.

2. As uev = 12 everywhere, we differentiate with respect to x to get

uxe
v + uevvx = 0,

which we can rewrite as

ux + uvx = 0 (5)

(as ev 6= 0).

Now differentiate with respect to y:

uye
v + uevvy = 0,

which we can rewrite as

uy + uvy = 0. (6)

But f is analytic on C, and so u and v satisfy the Cauchy-Riemann equations

everywhere. So

ux = vy (7) uy = −vx . (8)

Substitute (8) and (7) into (6) and (5) to get

uy + uux = 0 (9)

ux + u(−uy) = 0 . (10)

From (9) and (10) we get

(1 + u2)ux = 0.

As u is real-valued, 1 + u2 ≥ 1, and so ux = 0 everywhere. Then uy = 0 from (9).

As ux = 0 = uy everywhere, u is constant. Using the Cauchy-Riemann equations,

vx = vy = 0 everywhere, so v is also constant. Thus f = u+ iv is constant.
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6 Power series

6.1 Series with non-negative terms

We begin with a reminder of first year results. Suppose that a1, a2 , · · · are non-negative

real numbers. Pour volumes a1, a2 , a3, a4 , · · · of liquid into a vessel.

a1 a2 a3
. . .

SN
aN+1 aN+2

. . .

After N contributions, the vessel contains a volume SN = a1 + a2 + a3 + a4 + · · ·+ aN .

There are two possibilities:

(i) SN → ∞ as N → ∞. Then, no matter how large the vessel, the liquid will overflow

eventually and the series
∑∞

n=1 an diverges.

(ii) The partial sums are bounded. Then the vessel will not overflow if it is large enough

i.e. there exists some M such that SN ≤M for all N .

Fundamental Fact

In case (ii) there is a smallest vessel just large enough not to overflow. If its volume is L,

then SN → L as N →∞. The series converges and
∑∞

n=1 an = L.

Notice that S1, S2, S3, · · · is a set of numbers in a definite order. Such a set of numbers

is called a sequence.

It is clear that the sequence of partial sums Sn is increasing whenever an ≥ 0. The

preceding result is a case of the general result:

Theorem 6.1 An increasing sequence of real numbers is either

(i) bounded above and tends to a finite limit

or

(ii) not bounded above and tends to infinity.

There is an example in the the first year notes where the above ideas are used to prove

that
∑∞

n=1
1
n3 converges by comparing its terms with those of

∑∞
n=1

1
n2 which is known to

converge. Since

0 ≤ 1

n3
≤ 1

n2
(n ≥ 1) ,

0 ≤ TN =
N∑
n=1

1

n3
≤ SN =

N∑
n=1

1

n2
.

Now SN tends to a finite limit as N → ∞ and hence TN also tends to a finite limit as

N →∞ i.e.
∑∞

n=1
1
n3 also converges.
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This is an illustration of the use of the Comparison Test.

Theorem 6.2 Suppose that an ≥ 0, bn ≥ 0 and that

0 ≤ bn ≤ an for all n ≥ 1.

If
∑∞

n=1 an converges, then
∑∞

n=1 bn also converges.

6.2 Series of complex numbers

The condition that the terms of the series are non-negative real numbers can be relaxed.

Though the first year concentrated on series of real numbers, some of the results are true

for real and complex series and your first year notes make this clear.

For the sake of clarity I normally use zn rather than an for terms of complex series.

Definition 6.3 Suppose that zn ∈ C for all n and that SN = z1 + z2 + · · ·+ zN . Then we

say that
∑∞

n=1 zn converges if there is a complex number L such that SN → L as N →∞
i.e. there is a complex number L such that |SN − L| → 0 as N →∞.

If no such complex number exists, then we say that the series diverges.

Note. It is easy to show that SN → L as N → ∞ if and only if Re (SN) → ReL and

Im (SN)→ ImL as N →∞.

Series of complex numbers were mentioned in the first year. Bearing in mind that it is

a little time since your first year I felt that a reminder of some of the results might be

valuable in case they are no longer fresh in your mind.

Theorem 6.4 If
∑∞

n=1 zn converges, then zn → 0 as n→∞.

Note This Theorem guarantees the following:

If zn 9 0 as n→∞, then
∞∑
n=1

zn diverges.

Reminder In the first year, you met the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · .

This is an example of a divergent series
∑∞

n=1 zn for which zn → 0 as n→∞.

Hence zn → 0 as n → ∞ is NOT sufficient to guarantee the convergence of∑
zn.

Despite persistent folklore in undergraduate circles this is still not sufficient this year !!

In the first year you also had the following result:
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Definition 6.5 A series
∑∞

n=1 zn of complex numbers is said to be absolutely convergent

if
∑∞

n=1 |zn| converges.

Theorem 6.6 An absolutely convergent series of real or complex numbers is also conver-

gent.

Note For all complex numbers zn, |zn| is a non-negative real number and so any

result for series of non-negative real numbers is applicable to the series
∑∞

n=1 |zn| .

6.3 Power Series

Definition 6.7 Suppose that an ∈ C for all n and z0 ∈ C. A series of the form∑∞
n=0 an(z − z0)n is called a power series (centred on z0).

For the sake of simplicity we will put z0 = 0. The generalization of the results to

power series with other centres of expansion is obvious.

Examples.

1.
∑∞

n=0 n!zn (here, 0! ≡ 1).

2.
∑∞

n=0 z
n.

3.
∑∞

n=0
zn

n!
.

6.4 Convergence and absolute convergence

Theorem 6.8 Suppose w 6= 0 and
∑
anw

n is convergent. Then
∑
anz

n is absolutely

convergent for all z such that |z| < |w|.

So if a power series converges at some point, it is absolutely convergent at any point

nearer the origin.

Proof. If
∑
anw

n is convergent, then anw
n → 0 as n → ∞. As we explain below, this

means that there is some M such that |anwn| ≤M for all n Take z with |z| < |w|. Then

|anzn| = |anwn|
∣∣∣ z
w

∣∣∣n ≤M
∣∣∣ z
w

∣∣∣n .
But

∑
M | z

w
|n is a convergent geometric progression, since

∣∣ z
w

∣∣ < 1. By the comparison

test,
∑
|anzn| is convergent, i.e.,

∑
anz

n is absolutely convergent.

Note. Now we explain that bn → 0 implies that |bn| ≤ M for some M > 0 and

all n. As bn → 0, we can find some N ∈ N such that |bn| ≤ 1 for all n ≥ N . Take

M = max{|b1|, |b2|, . . . , |bN−1|, 1}. This is a finite set of real numbers, so has a maximum.

�
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6.5 Radius of convergence

Theorem 6.9 (Abel) For the power series
∑
anz

n, one of the following is true:

1. the power series converges only at z = 0 (e.g.,
∑
n!zn)

2. the power series is absolutely convergent for all z ∈ C (e.g.,
∑

zn

n!
)

3. we can find a real number R with 0 < R <∞ such that the power series is absolutely

convergent if |z| < R and divergent if |z| > R.

R is called the radius of convergence of the power series. In case (1), we put R = 0 and

in case (2) we put R =∞.

A formal proof of the above theorem can be found in any standard text on power series.

Definition 6.10 (Radius of Convergence, Disc of Convergence) The quantity R

in the above theorem (case (3)) is called the radius of convergence of the power series. In

case (1), we put R = 0 and in case (2) we put R =∞.

In case (3) the disc D = {z ∈ C : |z| < R} is called the disc of convergence of
∑
anz

n .

In case (2) the disc of convergence is C.

Note. Those of you who took the real analysis course will recognize that

R = sup{|z| :
∑
|anzn| converges.}

6.6 A possible formula for the radius of convergence

The formula which you had for the radius of convergence in the first year remains valid

for complex power series.

Theorem 6.11 If | an
an+1
| → R as n→∞, then R is the radius of convergence of

∑
anz

n.

Proof. (i) If z 6= 0 and R > 0,∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |z| → |z|R < 1 as n→∞

whenever |z| < R. Hence the power series converges absolutely for |z| < R.

(ii) If z 6= 0 and R > 0,∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |z| → |z|R > 1 as n→∞
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whenever |z| > R. Hence the power series diverges for |z| > R.

The result follows from (i) and (ii) when R > 0.

If R = 0 and z 6= 0, ∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |z| → ∞ as n→∞

and the ratio test shows that the power series is divergent for all z 6= 0. �

Corollary 6.12 If | an
an+1
| → ∞ as n → ∞, then the power series

∑
anz

n has infinite

radius of convergence i.e it converges absolutely for all z.

A power series always has a radius of convergence irrespective of whether∣∣∣ an
an+1

∣∣∣ tends to a limit as n→∞ or not.

6.7 Examples

Find the radius of convergence of each of the following power series:

1.
∑∞

0 (sinhn)zn ; 2.
∑∞

1
2nzn

n2 , 3.
∑∞

1
2nz4n

n2 ; 4.
∑∞

1
(3n)! n!

(4n)!
zn.

Solutions. 1. Using
∑∞

0 (sinhn)zn =
∑∞

0 anz
n, we have,∣∣∣∣ anan+1

∣∣∣∣ =

∣∣∣∣ sinhn

sinh(n+ 1)

∣∣∣∣ =
sinhn

sinh(n+ 1)
=

1
2

(en − e−n)
1
2

(en+1 − e−(n+1))

=
1− e−2n

e− e−2n−1
→ 1− 0

e− 0
=

1

e
as n→∞ .

It follows that the power series has radius of convergence R = 1
e

.

2. Using
∑∞

1
2nzn

n2 =
∑∞

1 anz
n, gives,∣∣∣∣ anan+1

∣∣∣∣ =
2n(n+ 1)2

2n+1n2
=

1

2

(
1 +

1

n

)2

→ 1

2
as n→∞ .

So the power series has radius of convergence R = 1
2
, by Theorem 6.11.

3. We can not apply Theorem 6.11 directly to the power series
∑∞

1
2nz4n

n2 , because the

coefficient of zn is zero unless n is a multiple of 4. In fact the power series is

0 + 0× z + 0× z2 + 0× z3 + 2z4 + 0× z5 + 0× z6 + 0× z7 + z8 + · · · .

So the ratio of the coefficients of successive powers of z is frequently undefined. To get

round the problem, we do the following.

Replace z4 by w, and consider the power series
∑∞

n=1
2nwn

n2 =
∑∞

n=1 anw
n, which has radius

of convergence R = 1
2

by the last example.
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Thus
∑∞

n=1
2nwn

n2 is absolutely convergent if |w| < 1
2

and is divergent if |w| > 1
2

.

It follows that
∑∞

n=1
2nz4n

n2 is absolutely convergent if |z4| < 1
2

and is divergent if |z4| > 1
2

.

Hence
∑∞

n=1
2nz4n

n2 is absolutely convergent if |z| < 2−
1
4 and is divergent if |z| > 2−

1
4 .

So the radius of convergence R = 2−
1
4 .

4. Write
∑∞

n=1
(3n)!n!
(4n)!

zn =
∑∞

n=1 anz
n. Then∣∣∣∣ anan+1

∣∣∣∣ =
(3n)!

(3(n+ 1))!

n!

(n+ 1)!

(4(n+ 1))!

(4n)!

=
(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

(3n+ 3)(3n+ 2)(3n+ 1)(n+ 1)

=
44

33

(1 + 1
n
)(1 + 3

4n
)(1 + 2

4n
)(1 + 1

4n
)

(1 + 1
n
)(1 + 2

3n
)(1 + 1

3n
)(1 + 1

n
)

→ 44

33

as n→∞. Thus the power series has radius of convergence R = 44

33 .

Theorem 6.13 The power series
∑∞

0 anz
n and

∑∞
1 nanz

n−1 both have the same radius

of convergence.

Note If | an
an+1
| → R as n→∞ , the result is easy to prove, as this implies that∣∣∣∣ nan

(n+ 1)an+1

∣∣∣∣ =

∣∣∣∣ n

(n+ 1)

∣∣∣∣ ∣∣∣∣ anan+1

∣∣∣∣→ R as n→∞ .

This makes the result plausible. A full proof can be found in any standard text on power

series

From the above result, we see that
∑∞

0 anz
n and

∑∞
1 nanz

n−1 both have the same disc

of convergence.

Theorem 6.14 Suppose that
∑∞

0 anz
n has radius of convergence R. Define f by

f(z) =
∞∑
0

anz
n (|z| < R) .

Then the function f is differentiable on the disc of convergence D = {z ∈ C : |z| < R}
and

f ′(z) =
∞∑
1

nanz
n−1 (|z| < R).

Thus a power series can be differentiated term by term inside the disc of convergence.

Since the disc D is an open set on which f is differentiable, the function f is analytic on
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D.

If
∑∞

0 anz
n has infinite radius of convergence, then the sum function f is analytic on C.

Thus the sum function of a power series is analytic on the disc of convergence.

It is also true that a power series can be integrated term by term in the disc of convergence.

In fact power series can be handled in the same way as polynomials inside the disc of

convergence.

6.8 Power series for Exponential, Trigonometric and Hyperbolic

Functions

To get the power series for cos z about z = 0, we use the power series ez =
∑∞

n=0
zn

n!
and

the expression cos z = 1
2
(eiz + e−iz). Thus

cos z =
1

2

∞∑
n=0

(
(iz)n

n!
+

(−iz)n

n!

)
=

1

2

∞∑
n=0

(in + (−i)n)
zn

n!

If n is odd, then in + (−i)n = 0. If n = 2k is even, then i2k + (−i)2k = (−1)k × 2. Thus

cos z =
∞∑
k=0

(−1)k

(2k)!
z2k

and the power series is valid for all z ∈ C.

Similarly, we get the natural extensions of the real series for sin z, cosh z and sinh z.

6.9 Switching orders

There are three big assumptions, all valid in this course with our situation, but which are

false in general.

A1. You can switch orders of summation and differentiation: i.e., if each function

gn (n = 1, 2, . . .) is analytic on a region D, and if for each z ∈ D the sum
∑

n gn(z) is

convergent, then
∑

n gn is analytic on D and (
∑

n gn)′ =
∑

n g
′
n on D.

A2. You can switch orders of summation and integration:

∑(∫
γ

gn

)
=

∫
γ

(∑
n

gn

)
.

A3. You can switch the order of differentiation and integration:

d

dz

(∫
γ

g(z, w)dw

)
=

∫
γ

∂

∂z
g(z, w)dw.
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7 More on
∫
γ f

7.1 Primitives

Definition 7.1 Let f be a complex-valued function defined on a region D. A function g

analytic on D and such that g′ = f at all points of D is said to be a primitive of f on D

(i.e., a primitive is an indefinite integral). �

Thus, if γ is ANY path in D, given by z = z(t) for a ≤ t ≤ b, then∫
γ
f(z) dz =

∫
γ
g′(z) dz =

∫ b
a
g′(z(t))z′(t) dt =

∫ b
a

d
dt

[g(z(t))] dt

= [g(z(t))]ba = g(z(b))− g(z(a)) = [ g(z) ]γ .

Note that d
dt

(g(z(t))) = g′(z(t))dz
dt

and [ g(z) ]γ is used for the value of g at the final point

of γ minus the value of g at the initial point of γ.

Note that if γ is a contour, then z(a) = z(b), and so
∫
γ
f(z)dz = 0. So if γ is a contour

in a region and f has a primitive in the region then
∫
γ
f(z)dz = 0.

7.2 Examples

1. Evaluate
∫
γ
z dz where γ is the path consisting of a line segment from 0 to 1 and

then a line segment from 1 to 1 + i.

2. Evaluate
∫
γ

sin z dz along the line segment from 1 to i.

3. Evaluate
∫
γ

sin z dz where γ is the contour z = eit (0 ≤ t ≤ 2π).

Solutions.

1. We first note that z2

2
is a primitive for z on the whole of C, and γ is a path. Hence∫

γ

z dz =

[
z2

2

]
γ

=
(1 + i)2

2
− 02

2
= i.

2. We note that − cos z is a primitive for sin z on C. Hence∫
γ

sin z dz = [− cos z]γ = − cos i− (− cos 1) = cos 1− cosh 1

(using cos iz = cosh z).

3. Again using the fact that − cos z is a primitive of sin z on C and γ is a contour, we

see that
∫
γ

sin z dz = [− cos z]γ = 0.

Note that in this case, the shape of the contour doesn’t matter.

In fact,
∫
γ

sin z dz = 0 for all contours in C. This works for
∫
γ
f(z) dz whenever f

has a primitive on C and γ is a contour.
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7.3 ML estimates for
∫
γ f

Lemma 7.2 Suppose that g : [a, b]→ C is continuous (so g is a function of a real variable,

but g(t) is complex- valued). Then |
∫ b
a
g(t)dt| ≤

∫ b
a
|g(t)|dt . �

Proof. If
∫ b
a
g(t) dt = 0, then the result is trivially true.

If
∫ b
a
g(t) dt 6= 0, it is a non-zero complex number and so it can be expressed in modulus-

argument form as ∫ b

a

g(t) dt = reiφ ,

where r =
∣∣∣∫ ba g(t) dt

∣∣∣ and −π < φ ≤ π. Thus∣∣∣∫ ba g(t) dt
∣∣∣ = r = e−iφ

∫ b
a
g(t) dt (real valued)

=
∫ b
a
e−iφg(t) dt (real valued)

= Re
(∫ b

a
e−iφg(t) dt

)
=

∫ b
a

Re (e−iφg(t)) dt

≤
∫ b
a
|Re (e−iφg(t))| dt

≤
∫ b
a
| e−iφg(t)| dt

(using rules for real-valued functions)

=
∫ b
a
| e−iφ| | g(t)| dt

=
∫ b
a
| g(t)| dt

(as |e−iφ| = 1) and the proof is complete. �

Theorem 7.3 Suppose that f is continuous on a path γ. Let γ have length L and suppose

that |f(z)| ≤M on γ. Then |
∫
γ
f | ≤ML . �

Proof. Using the Lemma, we see that,∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(z(t))z′(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(z(t))||z′(t)| dt ≤
∫ b

a

M |z′(t)| dt = ML ,

since L =
∫ b
a
|z′(t)| dt. �

7.4 Example

Let γ be a line segment lying withinD = {z ∈ C : |z| < 1}. Estimate

∫
γ

(
Re z + z2

3 + z

)
dz.
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Solution.

γ

Clearly the length L of any straight line segment, in the

disc {z ∈ C : |z| < 1} can’t exceed 2, the diameter of the disc. Now, for all z ∈ D,

|Re z + z2| ≤ | Re z|+ |z2| ≤ 1 + 1 = 2

and

| 3 + z| ≥ |3| − |z| ≥ 3− 1 = 2 giving

∣∣∣∣ 1

3 + z

∣∣∣∣ =
1

|3 + z|
≤ 1

2
.

Hence, for all z ∈ D, ∣∣∣∣Re z + z2

3 + z

∣∣∣∣ ≤ 2× 1
2

= 1

and so, in the M,L estimate, we can take M = 1. Hence by Theorem 7.3,∣∣∣∣∫
γ

Re z + z2

3 + z
dz

∣∣∣∣ ≤ 2.

8 Cauchy’s Theorem

8.1 Cauchy’s Theorem

Theorem 8.1 (Cauchy’s Theorem) Suppose the function f is analytic on a simply

connected region D. Then
∫
γ
f = 0 for all contours γ in D. �

Note. Cauchy’s Theorem was proved about 1814.

Discussion.

1. We have already seen, in 7.1, that if f has a primitive on D, then
∫
γ
f = 0. This

hypothesis is very strong and Cauchy’s statement is far superior.

Given an analytic function f it is unusual to be able to find a primitive. Cauchy’s

Theorem, however, allows us to consider
∫
γ
f without any need to find a primitive.

For example, let

f(z) =
sin(z3)

1 + z3
.
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Then the function f is analytic on C \ {−1, exp ( iπ
3

), exp (− iπ
3

)} and so it is analytic

on the disc U = {z ∈ C : |z| < 1}, which is a simply-connected region. Let γ be

any contour in U . Then ∫
γ

sin (z3)

1 + z3
dz = 0

by Cauchy’s Theorem, and we have found the value of the integral without doing

any integration.

2. The hypothesis that D is simply-connected is essential and this condition must

always be checked before applying Cauchy’s Theorem as the next example

illustrates.

We know that, if γ is the contour z = Reit (0 ≤ t ≤ 2π), then
∫
γ
dz
z

= 2πi. But
1
z

is analytic on C∗ = C \ {0} and γ is a contour in C∗ = C \ {0}. The region C∗,

however, is not simply-connected and Cauchy’s Theorem could not have been used.

3. Green’s Theorem gives some evidence for believing Cauchy’s Theorem. Suppose

that the function f is analytic in a simply-connected region Ω containing the contour

γ. Use the standard notation z = x + iy and f = u + iv. Then u, v satisfy the

Cauchy-Riemann equations

ux = vy vx = −uy ,

on Ω. Let ∆ be the region inside the contour γ. Then, using Green’s Theorem,∫
γ

f(z)dz =

∫
γ

(u+ iv)(dx+ idy)

=

∫
γ

(udx− vdy) + i

∫
γ

(udy + vdx)

=

∫ ∫
∆

(−vx − uy)dxdy + i

∫ ∫
∆

(ux − vy)dxdy

and both integrals vanish using the Cauchy-Riemann equations. This is not sufficient

to prove Cauchy’s Theorem, as we assumed that u and v have continuous first partial

derivatives in order to apply Green’s Theorem.

MAS332 46



8.2 Examples

Decide whether Cauchy’s Theorem can be used to help evaluate the following integrals

and evaluate those you can.

1.

∫
γ

dz

z2 + 4
, where γ is a contour lying in U = {z ∈ C : |z| < 1};

2.
∫
γ

Re z dz with γ as in question 1. above;

3.

∫
γ

z2 + 3

(z + 1) ez
dz with γ as in question 1. above;

4.

∫
γ

z2 + 3

(z + 1) ez
dz with γ given by z(t) = 2eit (0 ≤ t ≤ 2π).

Solutions.

1. As
1

z2 + 4
is analytic on C \ {± 2i}, it is analytic on the disc U , which is a

simply-connected region containing the contour γ. By Cauchy’s Theorem∫
γ

dz

z2 + 4
= 0 .

2. Here Cauchy’s Theorem is irrelevant as Re z is not analytic on any region. The

value of the integral will depend on γ.

3. As
z2 + 3

(z + 1) ez
is analytic on C \ {−1}, it is analytic on the disc U , which is a

simply-connected region containing the contour γ. By Cauchy’s Theorem∫
γ

z2 + 3

(z + 1) ez
dz = 0 .

4. Now γ is a contour, and
z2 + 3

(z + 1) ez
is analytic on C \ {−1}. But −1 belongs to

the interior of γ and, therefore, there is no simply connected region containing γ in

which the integrand is analytic. Cauchy’s Theorem is not applicable if the contour

contains any “bad points” of the function. We will develop a method to evaluate

this sort of integral later, which avoid real integration techniques.

8.3 Independence of path

Theorem 8.2 Let f be analytic on a simply-connected region D and let γ1 and γ2 be any

two paths in D from a to b. Then∫
γ1

f(z) dz =

∫
γ2

f(z) dz . �
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Proof. The function f is analytic on the simply-connected region D and γ1 − γ2 is a

contour in D.

y

x

γ1

γ2

a

b

D

By Cauchy’s Theorem∫
γ1−γ2

f(z) dz = 0

and so

∫
γ1

f(z) dz −
∫
γ2

f(z) dz = 0 ,

i.e. ∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

�
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8.4 Example

Let γ be any path from−i to i which crosses R only between−1 and 1. Evaluate

∫
γ

dz

1− z2
.

Solution. Let λ be the straight line segment from −i to i and let

f(z) =
1

1− z2
.

1−1 1−1

−i

i

α

γ

y

x
O

Then the function f is analytic C \ {± 1} and so f is analytic on the cut plane

C∗ = C \ {x ∈ R : |x| ≥ 1} which is a simply-connected region which contains γ and λ.

By Cauchy’s theorem
∫
γ
f(z) dz =

∫
λ
f(z) dz. Thus∫

γ

dz

1− z2
=

∫
λ

dz

1− z2
=

∫ 1

−1

i dy

1 + y2
= i
[
tan−1 y

]1
−1

= i
π

2
.

8.5 Application to ML-estimates

Example. Let α be any path in D = {z ∈ C : |z| < 2}. Find B so that∣∣∣∣∣
∫
α

sinh z

9 + ez
dz

∣∣∣∣∣ ≤ B .
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Solution. Suppose that the path α has initial and final points z0 and z1 respectively.

Let λ be the straight line segment from z0 to z1. Then λ ⊂ D.

y

x

z0

z1λ

O

Now sinh z is analytic on C and for all z ∈ D,

| ez| = eRe z < e2 < 9

as ex is an increasing function on R. Hence 9 + ez is analytic and non-zero

on D. Thus
1

9 + ez
is analytic on D and, therefore,

sinh z

9 + ez
is analytic

on the disc D, which is a simply connected region.

Hence by theorem 8.2,∣∣∣∣ ∫
α

sinh z

9 + ez
dz

∣∣∣∣ =

∣∣∣∣ ∫
λ

sinh z

9 + ez
dz

∣∣∣∣ ≤ ML ,

where

∣∣∣∣ sinh z

9 + ez

∣∣∣∣ ≤ M on λ and the length of λ is |z1− z0| which is less than 4, so L < 4

in the estimate.

To compute M , we note that for all z ∈ D,

| 9 + ez| ≥ | 9| − | ez| ≥ 9− e2
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and

| sinh z| =
∣∣1

2
(ez − e−z)

∣∣
≤ 1

2
(| ez|+ | e−z|)

= 1
2

(eRe z + eRe (−z)) = 1
2

(ex + e−x)

= cosh x

≤ cosh 2.

So we can take M =
cosh 2

9− e2
, and so

B = ML =
4 cosh 2

9− e2
.

9 Cauchy’s Integral Formula (CIF)

9.1 Deforming contours

Theorem 9.1 Let γ be a simple (see section 3.1) contour described in the positive direc-

tion. Let z0 be a point inside γ, and let C : z = z0 + reit (0 ≤ t ≤ 2π) where r is small

enough for C to lie inside γ. Suppose f is analytic on a region D which contains γ and

C and all points in between (so D need not be simply-connected). Then∫
γ

f =

∫
C

f. �

Proof. Draw two non-intersecting lines l1 and l2 joining C and γ. Suppose l1 is the line

segment from the point a1 on γ to the point b1 on C, and that l2 goes from the point a2

on γ to b2 on C. Then γ is broken up into two parts, γ1 from a1 to a2 and γ2 from a2 to

a1. Likewise, C is broken up into two parts, C1 from b1 to b2 and C2 from b2 to b1.

γ

C .z0

Then the contour

γ1 + l2 − C1 − l1
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is a contour going from a1 to itself, contained in a simply connected region D1 in which

the function f is analytic. Similarly, the contour

γ2 + l1 − C2 − l2

is a contour going from a2 to itself, contained in a simply connected region D2 in which

the function f is analytic. We apply Cauchy’s Theorem to the simply connected regions

D1 and D2 to find that ∫
γ1

f +

∫
l2

f −
∫
C1

f −
∫
l1

f = 0

and ∫
γ2

f +

∫
l1

f −
∫
C2

f −
∫
l2

f = 0.

Adding these and using the fact that γ = γ1 + γ2 and C = C1 + C2. We get∫
γ

f −
∫
C

f = 0

and the result follows. �

So Theorem 9.1 says that you can deform one contour into another one without chang-

ing the value of the integral provided the integrand is analytic between the two contours.

9.2 Cauchy’s integral formula

Theorem 9.2 (Cauchy’s integral formula) Let γ be a simple contour described in the

positive direction. Let w lie inside γ. Suppose that the function f is analytic on a simply-

connected region D containing γ and its interior. Then

f(w) =
1

2πi

∫
γ

f(z)

z − w
dz. �

Proof. Let C be the circular contour given by z = w + reit (0 ≤ t ≤ 2π), where r > 0

is small enough for C to lie inside γ. Then f(z)
z−w is analytic on D except at w, and the

hypothesis of Theorem 9.1 holds for the region D \ {w}. Hence

1

2πi

∫
γ

f(z)

z − w
dz =

1

2πi

∫
C

f(z)

z − w
dz

=
1

2πi

∫
C

f(z)− f(w)

z − w
dz +

1

2πi

∫
C

f(w)

z − w
dz

= I +
f(w)

2πi

∫ 2π

0

rieit

reit
dt

= I + f(w)

So
1

2πi

∫
γ

f(z)

z − w
dz − f(w) = I
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and the left hand side is independent of r. Hence the value of I is independent of r.

We now prove that I = 0 by using the ML-estimates .

Let M(r) be the maximum value of |f(z) − f(w)| for z on C. Then M(r) → 0 as

r → 0 because the function f is continuous at w. Using an ML-estimate, we have

|I| =
∣∣∣∣ 1

2πi

∫
C

f(z)− f(w)

z − w
dz

∣∣∣∣ ≤ 1

2π

M(r)

r
2πr = M(r) → 0 as r → 0. (1)

Now the value of I is independent of r and |I| ≤M(r) for all sufficiently small r > 0, by

equation (1). Since M(r) → 0 as r → 0, we see that the value of |I| is less than every

positive real number. Hence |I| = 0 and the result now follows. �

Note that we could have formulated it as∫
γ

f(z)

z − w
dz = 2πif(w).

Observe that the formula gives the value of f at w, a point lying strictly inside γ, in terms

of its values on γ.

However, this result is frequently used to evaluate given integrals. To do

this we choose a suitable function f(z) so that the given integral takes the

form above. Examples of this are given below.

How to use Cauchy’s Theorem and Cauchy’s Integral Formulae to evaluate

integrals of the form
∫
γ
f(z)
z−w dz.

• First draw a diagram showing the contour γ and the point w.

• If w is outside γ we use Cauchy’s Theorem (CT).

• If w is inside γ we use Cauchy’s Integral Formula (CIF).

The shape of γ is not otherwise important.

9.3 Examples

Let γ be the simple, positively oriented triangular contour from 0 to 2− 3i to 2 + 2i and

back to 0. Evaluate

(1)

∫
γ

ez

z − 1
dz, (2)

∫
γ

ez

z + 1
dz, (3)

∫
γ

1

z2 − 1
dz, (4)

∫
γ

zez
2

(z − 1)(2z − 1)
dz, (5)

∫
γ

ez
2

z2 − 1
dz.

Solutions. We begin by drawing a diagram showing the contour γ and marking the

points at which the integrand is not analytic, i.e. we mark the “bad points”. We look

at where these bad points lie in relation to γ and decide whether Cauchy’s Theorem or

Cauchy’s integral formulae are appropriate or not. The most important point to establish

whether the bad points are inside the contour or outside it. The shape of γ is not otherwise
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important.

In these examples γ is the triangular contour from 0 to 2− 3i to 2 + 2i and back to 0.

We note that γ is a simple contour described in the positive direction. This

will be used in the solution to questions 1,3,4,5.

1. Let f(z) = ez. Then f is analytic in C which is a simply-connected region containing

γ. The point 1 is inside γ. By Cauchy’s integral formula,∫
γ

ez

z − 1
dz =

∫
γ

f(z)

z − 1
dz = 2πif(1) = 2πie.

2. Let g(z) = ez

z+1
. Here, the ‘bad’ point −1 lies outside γ, and so we use Cauchy’s

Theorem. Now the function g is analytic in the half-planeH = {z ∈ C : Re z > −1},
which is a simply-connected region containing the contour γ. By Cauchy’s Theorem,∫

γ

ez

z + 1
dz =

∫
γ

g(z) dz = 0.

3. We could use partial fractions to see that,∫
γ

1

z2 − 1
dz =

1

2

[ ∫
γ

1

z − 1
dz −

∫
γ

1

z + 1
dz

]
.

Cauchy’s integral formula could then be used to evaluate the first integral on the

RHS and Cauchy’s Theorem gives 0 as the value of the second integral. However,

there is a way of avoiding partial fractions altogether in this case.

Let h(z) = 1
z+1

. Then h is analytic in the half-plane H used in question 2 above.

Now the point 1 is inside γ. By Cauchy’s integral formula∫
γ

1

z2 − 1
dz =

∫
γ

1

(z + 1)(z − 1)
dz =

∫
γ

h(z)

z − 1
dz = 2πih(1) = πi.

In general, it is a good idea to avoid the use of partial fractions, if possible. The

idea is to take factors in the denominator up into the function in the numerator

if they are non-zero on the simply connected region. This shortens the work and

avoids careless mistakes in the partial fractions!!!
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4. We note that zez
2

(z−1)(2z−1)
is analytic in C \ {1

2
, 1}. The bad points, 1

2
and 1 both lie

inside γ, so we must use partial fractions. There is no way of avoiding them this

time! We have

1

(z − 1)(2z − 1)
=

1

2 (z − 1)
(
z − 1

2

) =
1

(z − 1)
− 1(

z − 1
2

) . (1)

Let k(z) = z ez
2
. Then k is analytic in C, which is a simply-connected region

containing γ. Since the points 1
2
, 1 lie inside γ, Cauchy’s integral formula gives,∫

γ

zez
2

(z − 1)(2z − 1)
dz =

∫
γ

k(z)

2(z − 1)(z − 1
2
)
dz =

∫
γ

k(z)

z − 1
dz −

∫
γ

k(z)

z − 1
2

dz

= 2πik(1)− 2πik
(

1
2

)
= 2πi

(
e− 1

2
e

1
4

)
,

using (1).

5. This time we can avoid the use of partial fractions. Let m(z) = ez
2

z+1
and let H be

the half-plane used in the solution of question 3, i.e. H = {z ∈ C : Re z > −1}.
then m is analytic in H, which is a simply-connected region containing γ. Since the

point 1 lies in side γ, Cauchy’s integral formula gives∫
γ

ez
2

z2 − 1
dz =

∫
γ

ez
2

(z + 1)(z − 1)
dz =

∫
γ

m(z)

z − 1
dz = 2πim(1) = πie .

9.4 Cauchy’s integral formula for the derivatives

Theorem 9.3 [Cauchy’s integral formula for the derivatives] Let γ be a simple contour

described in the positive direction. Let w be any point inside γ. Suppose that the function

f is an analytic on a simply-connected region D containing γ and its interior. Then, for

all n ∈ N,

f (n)(w) =
n!

2iπ

∫
γ

f(z)

(z − w)n+1
dz,

or equivalently, ∫
γ

f(z)

(z − w)n+1
dz =

2iπ

n!
f (n)(w). �

Proof. CIF says that

f(w) =
1

2iπ

∫
γ

f(z)

z − w
dz.

Differentiate with respect to w (which we denote ′):

f ′(w) =
1

2iπ

(∫
γ

f(z)

z − w
dz

)′
=

1

2iπ

∫
γ

(
f(z)

z − w

)′
dz

=
1

2iπ

∫
γ

f(z)

(z − w)2
dz
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where we assume that the integration and differentiation may be switched. Differentiating

again as many times as necessary, to get the result. Note that(
1

z − w

)(n)

=
n!

(z − w)n+1
.

Thus we get Cauchy’s Integral Formula for the nth derivative, which will be denoted by

(CIF )(n) when we wish to emphasize which derivative is involved. �

Corollary 1. If f is analytic on a region D, then f has derivatives of all orders at each

point of D and each derivative is analytic on D.

Proof. Take any point w ∈ D. As D is a region, it is open, so we can find a disc

∆ = {z ∈ C : |z − w| < R} about w contained in D. Let γ be the circular contour

z = w + reit (0 ≤ t ≤ 2π), where 0 < r < R.

D

Then f is analytic in the simply-connected region ∆ containing the simple contour

γ, which is described in the positive direction. Since the point w is inside γ, Cauchy’s

integral formula for the nth derivative implies that f (n)(w) exists for all n ∈ N. As w ∈ D
is arbitrary we see that f (n) exists on D.

Since f (n+1) exists on D, it follows that f (n) is differentiable on D and so f (n) is analytic

on the region D. This is true for all n ∈ N. �

Corollary 2 (Theorem 5.9). Suppose f = u + iv is analytic on a region D. Then u

and v are harmonic on D.

Proof. (Proper) By Corollary 1, f ′ is analytic on D. Write

f ′ = ux − iuy = U + iV where U = ux , V = −uy .

Then U and V satisfy the first Cauchy-Riemann equation Ux = Vy, i.e. (ux)x = (−uy)y,
so uxx + uyy = 0 on D.

As f ′ = vy+ivx satisfies the second Cauchy-Riemann equation, we see that (vy)y = −(vx)x,

so vxx + vyy = 0 on D. �

9.5 Examples

Let γ be the simple, positively oriented triangular contour from 0 to 2− 3i to 2 + 2i and

back to 0. Evaluate

(1)

∫
γ

sin z

(z − 1)2n+1
dz , (2)

∫
γ

sin z

(z + 1)2n+1
dz , (3)

∫
γ

cos(z2)

(2z − 1)2
dz ,
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(4)

∫
γ

ez

(z − 1)10
dz , (5)

∫
γ

ez

(z2 − 1)2
dz .

Solutions. In these examples γ is the triangular contour from 0 to 2− 3i to 2 + 2i and

back to 0.

We note that γ is a simple contour described in the positive direction. This

will be used in the solution to questions 1,3,4,5.

1. Let f(z) = sin z . Then f is analytic in C, which is a simply-connected region

containing the contour γ. Since the point 1 lies inside γ, we use (CIF )(2n) with

w = 1. Now the (2n)th derivative of sin z is (−1)n sin z and so∫
γ

sin z

(z − 1)2n+1
dz =

∫
γ

f(z)

(z − 1)2n+1
dz =

2πi

(2n)!
f (2n)(1) =

2πi

(2n)!
(−1)n sin 1.

2. The bad point −1 lies outside γ, and sin z
(z+1)2n+1 is analytic on the half-plane

H = {z ∈ C : Re z > −1} which is a simply connected region containing the

contour γ. Thus, by Cauchy’s Theorem∫
γ

sin z

(z + 1)2n+1
dz = 0.

3. Let g(z) = cos (z2) . Then g is analytic in C, which is a simply-connected region

containing γ. The point 1
2

lies inside γ. Using Cauchy’s integral formula for the

first order derivative, we see that,∫
γ

cos(z2)

(2z − 1)2
dz =

1

4

∫
γ

cos(z2)

(z − 1
2
)2
dz =

1

4

∫
γ

g(z)

(z − 1
2
)2
dz

= 1
4

2πi
1!
g′
(

1
2

)
= πi

2
[−2z sin(z2)]z= 1

2
= −πi

2
sin 1

4
.

4. Let h(z) = ez. Then h is analytic in C, which is a simply- connected region contain-

ing γ. Since the point 1 is inside γ, Cauchy’s integral formula for the 9th derivative

gives, ∫
γ

ez

(z − 1)10
dz =

∫
γ

h(z)

(z − 1)10
dz =

2πi

9!
h(9)(1) =

2πie

9!
.
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5. Let k(z) = ez

(z+1)2 . Then k is analytic on the half-plane H = {z ∈ C : Re z > −1}
which is a simply connected region containing the contour γ. Since the point 1 is

inside γ, Cauchy’s integral formula for the first derivative gives,∫
γ

ez

(z2 − 1)2
dz =

∫
γ

ez

(z − 1)2(z + 1)2
dz =

∫
γ

k(z)

(z − 1)2
dz

=
2πi

1!
k′(1) = 2πi

(
e

4
− 2e

8

)
= 0,

using the fact that k′(z) = ez

(z+1)2 − 2ez

(z+1)3 .

9.6 Liouville’s Theorem

Using Cauchy’s Integral Formulae we can prove Liouville’s Theorem

Theorem 9.4 (Liouville’s Theorem) A function which is analytic and bounded in the

complex plane is a constant.

Proof. Suppose that |f(z)| ≤ M for all z ∈ C. Choose any two distinct points a and

b in C and choose R so that R ≥ 2 max{|a|, |b|} and let γ be the contour given by

z = Reit (0 ≤ t ≤ 2π).

−R R

|z| = R

a
b

Then using Cauchy’s Formula

f(b)− f(a) =
1

2πi

∫
γ

f(w)

(
1

w − b
− 1

w − a

)
dw (1)

=
b− a
2πi

∫
γ

f(w)

(w − b)(w − a)
dw ,
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Now for all w on γ, |w − a| > 1
2
R and |w − b| > 1

2
R and so |(w − a)(w − b)| < 1

4
R2 on

γ. It follows that

|f(b)− f(a)| =

∣∣∣∣b− a2πi

∣∣∣∣ ∣∣∣∣ ∫
γ

f(w)

(w − b)(w − a)
dw

∣∣∣∣
≤ |b− a|

2π
.
2πR4M

R2
=

4|b− a|M
R

The righthand side of this inequality can be made arbitarily small by making R suf-

ficiently large and hence |f(b) − f(a)| is less than every positive real number, however

small, i.e. f(b) = f(a). This is true for all points a and b in C. Hence f is constant in

C. �

9.7 Corollary

Using Liouville’s Theorem, we can prove the Fundamental Theorem of Algebra

Corollary 9.5 (Fundamental Theorem of Algebra) Let p(z) be a non-constant polynomial

with complex coefficients, then there is a point w ∈ C such that p(w) = 0.

Proof. We use a contradiction argument.

Suppose that the non-constant polynomial p is non-zero in C and let g(z) =
1

p(z)
for all

z ∈ C, then g is analytic in C. Now p is a non-constant polynomial and so |p(z)| → ∞
as |z| → ∞. Hence |g(z)| =

∣∣∣ 1
p(z)

∣∣∣ → 0 as |z| → ∞ and so there exists R > 0 such

that |g(z)| < 1 for all z such that |z| > R . (1)

Now D = {z ∈ C : |z| ≤ R} is a closed bounded set in C and so the analytic function g

is bounded on D and there exists M such that |g(z)| ≤M for all z ∈ D (2).

From (1) and (2) we see that g is analytic and bounded on C and so by Liouville’s

Theorem g is constant, giving p = 1
g

is also a constant, which is a contradiction.

Thus p(z) has a zero w in C.

From this we can deduce, using Mathematical Induction, that a polynomial of degree n

with complex coefficients has precisely n complex roots, where multiple roots are counted

according to their multiplicity.

Note. If p has degree n, where n > 1, then there is a complex number w such that

p(w) = 0 and so we can write p(z) = (z−w)q(z) where q is a polynomial of degree (n−1)

and the Induction proof is obvious. �
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10 Taylor’s Theorem

10.1 Taylor’s Theorem

Theorem 10.1 (Taylor’s Theorem) Let the function f be analytic in the disc

∆ = {z ∈ C : |z − z0| < r}, where r > 0 . Then f(z) has a Taylor expansion about z0

valid on ∆. For all z ∈ ∆,

f(z) = f(z0) +
∞∑
n=1

f (n)(z0)

n!
(z − z0)n.

Proof. Consider z ∈ ∆, and choose ρ ∈ ∆ such that |z − z0| < ρ < r. Let γρ be the

circular contour given by w = z0 + ρeit (0 ≤ t ≤ 2π). Then ∆ is a simply connected

region containing γρ.

z.

.z0

∆ is the shaded open disc in the above diagram.

Using Cauchy’s Integral Formula gives

f(z) =
1

2πi

∫
γρ

f(w)

w − z
dw . (1)

We expand 1
w−z in powers of (z − z0) and (w − z0). Write

1

w − z
=

1

(w − z0)− (z − z0)
=

1

(w − z0)

(
1− z − z0

w − z0

)−1

=
1

(w − z0)

∞∑
n=0

(
z − z0

w − z0

)n
=

∞∑
n=0

(z − z0)n

(w − z0)n+1
.

(Note that | z−z0
w−z0 | < 1 for w ∈ γρ.)
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Using (1) gives

f(z) =
1

2πi

∫
γρ

f(w)

w − z
dw

=
1

2πi

∫
γρ

∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1
dw

=
∞∑
n=0

(
1

2πi

∫
γρ

f(w)

(w − z0)n+1
dw

)
(z − z0)n

=
∞∑
n=0

f (n)(z0)

n!
(z − z0)n

using CIF (n) after switching orders of integration and summation. �

10.2 Example

Find the Taylor series expansion of 1
1−z2 about z = 0. Where is this expansion valid?

Solution. We use the familiar relation

1

1− t
= 1 + t+ t2 + t3 + · · · (|t| < 1) (∗)

with t replaced by z2. This gives

1

1− z2
= 1 + z2 + z4 + z6 + · · · =

∞∑
n=0

z2n

for |z| < 1. This is the Taylor series for 1
1−z2 valid in the disc D = {z ∈ C : |z| < 1}.

This method was much easier than differentiating 1
1−z2 and evaluating the derivatives at

the origin. But, how do we know that this is the Taylor series since we did not differentiate

to find the Taylor coefficients?

We can show that a function analytic in a disc ∆ = {z ∈ C : |z − z0| < r} (r > 0),

has one and only one series expansion in powers of (z− z0) valid in ∆, namely the Taylor

series. This is called the uniqueness theorem for Taylor series. In view of this result you

can use the easiest method, in any given problem, to obtain a valid series expansion and

you can be sure that this expansion is, indeed, the Taylor series.

In practice, we will usually obtain the Taylor series by manipulating known

expansions and avoid differentiating.
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Theorem 10.2 (Uniqueness Theorem for Taylor series expansions) Suppose that the

function f is analytic in the disc ∆ = {z ∈ C : |z − z0| < r}, where r > 0. Suppose

also that

f(z) = b0 + b1(z − z0) + b2(z − z0)2 + · · · =
∞∑
n=0

bn(z − z0)n (I)

on ∆. Then

bn =
f (n)(z0)

n!
(n = 0, 1, 2, 3, · · · )

i.e.
∑∞

n=0 bn(z − z0)n is the Taylor series for f(z) on ∆.

Proof. Since

f(z) =
∞∑
n=0

bn(z − z0)n , f(z0) = b0 .

Now a power series can be differentiated term by term, any number of times, in its disc of

convergence. Differentiate n times, in the disc of convergence, and put z = z0, to obtain

f (n)(z0) = n! bn i.e. bn =
f (n)(z0)

n!
.

Thus
∑∞

n=0 bn(z − z0)n is the Taylor series. �

10.3 Example

1. Find the Taylor series of
1

z − 1
about z = 2.

Note When finding Taylor Series it is frequently useful to use the following

relation
1

1− t
= 1 + t+ t2 + t3 = · · · =

∞∑
n=0

tn (|t| < 1)

with a suitable expression in place of t.

In general, if the centre of the expansion is z0 6= 0, put w = z−z0 and expand

in powers of w, then replace w by (z − z0), to obtain a power series in powers

of (z − z0).

Solution.

1. The function 1
z−1

is analytic on C \ {1} and so it is analytic in the disc

D = {z ∈ C : |z − 2| < 1}. This is the largest disc with centre 2 in which f is

analytic.

MAS332 62



21 3

D

Here, the centre of expansion is 2, and so we put w = z − 2 (see note at end of

questions). Then, for |z − 2| < 1 i.e. for |w| < 1,

1

z − 1
=

1

w + 1
=
∞∑
n=0

(−1)nwn

using a known expansion, so the Taylor series about z = 2, in powers of (z − 2), is

1

z − 1
=
∞∑
n=0

(−1)n(z − 2)n ,

valid on ∆ = {z : |z − 2| < 1}.

10.4 Zeros

Definition 10.3 Suppose that f is analytic on a region D and f(w) = 0 for some w ∈ D.

Then w is a zero of f .

If the function f has a zero at the point w, then f(w) = 0 and the Taylor expansion of

f(z) about w is of the form

f(z) = f(w) + f ′(w)(z − w) + f ′′(w)
2!

(z − w)2 + · · ·
= f ′(w)(z − w) + f ′′(w)

2!
(z − w)2 + · · ·

= (z − w)g(z),

where

g(z) = f ′(w) +
f ′′(w)

2!
(z − w) + · · ·

and so the function g is analytic in some neighbourhood of w.

Of course, we may have f ′(w) = 0 as well, in which case we can take out a factor (z−w)2

and so on.

Definition 10.4 Suppose that the function f is analytic in a region D and w ∈ D.

If f(w) = f ′(w) = · · · = f (k−1)(w) = 0 and f (k)(w) 6= 0 (so we can take out a factor

(z − w)k), we say that f has a zero of order k at w.
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Thus if the function f has a zero of order k at w, then we can express f(z) in the form

f(z) = (z−w)kg(z) where g is analytic in some neighbourhood of w and g(w) = f (k)(w)
k!
6= 0.

If k = 1, we say that the zero is a simple zero.

Theorem 10.5 Let k be a positive integer. The function f has a zero of order k at w if

and only if

f(z) = (z − w)kg(z)

in some neighbourhood U of w, where the function g is analytic and non-zero on U .

Proof. If the function f has a zero of order k at w, then f(z) has a Taylor expansion

about w of the form

f(z) = f(w) + f ′(w)
1!

(z − w) + f ′′(w)
2!

(z − w)2 + · · ·

= 0 + 0 + · · ·+ 0 + f (k)(w)
k!

(z − w)k + f (k+1)(w)
(k+1)!

(z − w)(k+1) + · · ·

= (z − w)k
[
f (k)(w)
k!

+ f (k+1)(w)
(k+1)!

(z − w) + · · ·
]

= (z − w)k g(z) ,

where g is analytic and non-zero in some disc U about w, since g is the sum function of

a power series about w (with positive radius of convergence) and g(w) = f (k)(w)
k!
6= 0.

Conversely, if

f(z) = (z − w)kg(z)

in some neighbourhood U of w, where the function g is analytic and non-zero on U , then

using Leibnitz Theorem to differentiate the product gives

f(w) = 0, f (n)(w) = 0 (n = 0, ..., (k − 1)), f (k)(w) 6= 0,

and, therefore, f has a zero of order k at w. �

Corollary 10.6 Suppose that

(i) the function f has a zero of order m at the point w;

(ii) the function g has a zero of order n at the point w.

Write h(z) = f(z)g(z). Then h has a zero of order m+ n at w.

i.e. fg has a zero of order m+ n at the point w.

10.5 Examples

1. Show that sin z has a simple zero at z = 0.

2. Find the order of the zero of 1− cos z at z = 0.

3. Show that z sin(z2) has a zero of order 3 at the origin.
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Solutions.

1. Let f(z) = sin z Then, f is analytic in C and, for all integers n,

f(nπ) = sin(nπ) = 0 and f ′(nπ) = (cos(nπ)) = (−1)n 6= 0.

Thus sin z has a simple zero at z = 0. It also has simple zeros at the points

± π, ± 2π, ± 3π, · · · .

2. Let g(z) = 1− cos z. Then g is analytic in C and

g(0) = 0 , g′(0) = sin 0 = 0 , g′′(0) = cos 0 = 1 6= 0.

Hence g has a zero of order 2 at z = 0.

3. Let h(z) = sin(z2). Then h is analytic on C and

h(0) = 0, h′(0) =
(
2z cos(z2)

)
z=0

= 0, h′′(0) =
(
2 cos(z2)− 4z2 sin(z2)

)
z=0

= 1 6= 0.

Thus sin(z2) has a zero of order 2 at the origin. Since z is analytic in C and has a

zero of order 1 at the origin, we see, from corollary 10.6, that z sin(z2) has a zero of

order 3 at the origin.

11 Laurent’s Theorem

11.1 Doubly infinite series

Let α ∈ C. In section 6.5 we saw that a power series
∑∞

n=0 an(z − α)n has a radius of

convergence R1 , say.

If we consider
∑∞

n=1
bn

(z−α)n
, we can view this as a power series in 1

z−α and it will

converge on a set of the form {z : |z − α| > R2} for some R2. If we put a−n = bn for all

positive integers n, then

∞∑
n=1

bn
(z − α)n

=
∞∑
n=1

a−n(z − α)−n =
−1∑

n=−∞

an(z − α)n .

Suppose R1 > R2. Then we can expect the doubly infinite series

∞∑
n=−∞

an(z − α)n =
−1∑

n=−∞

an(z − α)n +
∞∑
n=0

an(z − α)n

to have an annulus of convergence {z : R2 < |z − α| < R1}. (R2 = 0 and R1 = ∞ are

allowed.) In this course we will only consider the case in which R2 = 0.

Definition 11.1 A function f which is analytic on the punctured disc

D′ = {z ∈ C : 0 < |z − α| < R} but not on {z ∈ C : |z − α| < R} is said to have an

isolated singularity at α.

So “isolated singularity” is the same as “bad point”.
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11.2 Examples

1. 1
sin z

has singularities at z = nπ for n ∈ Z and is analytic on {z : 0 < |z| < π} for

example.

2. 1
(z−1)(z+2)

has singularities at 1 and at −2, and is analytic on the punctured discs

{z : 0 < |z − 1| < 3} and {z : 0 < |z + 2| < 3}.

11.3 Laurent’s Theorem

Theorem 11.2 (Laurent’s Theorem) Suppose that f has an isolated singularity at α

(so f is analytic on some punctured disc D′ = {z : 0 < |z − α| < R}). Then f can be

represented on D′ by a Laurent series about z = α, i.e.,

f(z) =
∞∑

n=−∞

an(z − α)n

for z ∈ D′. The Laurent coefficients are given by

an =
1

2πi

∫
Cr

f(w)

(w − α)n+1
dw,

where Cr : w = α + reit (0 ≤ t ≤ 2π) for any 0 < r < R.

Note. The an are independent of r: if 0 < r1 < r2 < R, we know that the function
f(w)

(w−α)n+1 is analytic on the D′ and is therefore analytic between Cr1 and Cr2 . By Theo-

rem 9.1, we see that ∫
Cr1

f(w)

(w − α)n+1
dw =

∫
Cr2

f(w)

(w − α)n+1
dw

and so is independent of r.

[Rest of proof omitted.]

We also assume that the Laurent series is uniquely determined (like the Taylor series).

Definition 11.3 The Laurent coefficient a−1 is called the residue of f at α. We write

a−1 = Res {f ;α}. �

If f has a singularity at α and Cr is a positively oriented circle centred on α of radius r,

then ∫
Cr

f(z)dz = 2πiRes {f ;α}.

We develop means of finding residues independently of this formula and this will enable

us to evaluate certain integrals immediately.
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11.4 Examples

1. Find the residue of sinh z
z4 at the origin.

2. Find the Laurent series of 1
z(z−1)

about z = 1 giving an expression for the general

term. Where is this expansion valid?

Solutions.

1. Let f(z) = sinh z
z4 . Then f has a singularity at 0 and that it is analytic on C \ {0}.

For z 6= 0,

f(z) =
sinh z

z4
=

z + z3

6
+ z5

120
+ · · ·

z4
=

1

z3
+

1
6

z
+

z

120
+ · · ·

and so Res {f : 0} = 1
6
.

2. Let g(z) = 1
z(z−1)

. Then g is analytic in C \ {0, 1}. It has isolated singularities at

the points 0,1. It is analytic on the punctured disc D∗ = {z ∈ C : 0 < |z − 1| < 1}
about 1. Hence g(z) has a Laurent series expansion, in powers of z − 1 valid in D∗.

Put w = z − 1. For 0 < |z − 1| < 1, i.e. 0 < |w| < 1,

D∗

0 1

g(z) =
1

z(z − 1)
=

1

z − 1
− 1

z
=

1

w
− 1

1 + w

=
1

w
−
∞∑
n=0

(−1)nwn =
1

z − 1
−
∞∑
n=0

(−1)n(z − 1)n .

This is the Laurent series expansion for g(z) valid in D∗.

Summary.

If f is analytic at z0, then f(z) has a Taylor Series expansion f(z) =
∑∞

n=0 an(z−z0)n

valid for z in some disc ∆ centred on z0.

If the function f has an isolated singularity at α, then f(z) has a Laurent Series

expansion f(z) =
∑∞

n=−∞ an(z − α)n valid for z in some punctured disc D′ centred on α.
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11.5 Classification of singularities

Suppose that f has an isolated singularity at α. Then f(z) has a Laurent series expansion

f(z) =
∞∑

n=−∞

an(z − α)n =
∞∑
n=1

bn
(z − α)n

+
∞∑
n=0

an(z − α)n ,

valid in some punctured disc about α, where bn = a−n for all positive integers n.

A. REMOVABLE SINGULARITY.

Definition 11.4 If an = 0 for all n < 0, (so that bn = 0 for all positive integers n,

i.e. all the negative powers of (z−α) in the Laurent expansion have coefficient 0) then α

is called a removable singularity.

If the function f has a removable singularity at α, then f(α) is undefined (or it has an

unsuitable value). If we define f(α) by (or change the value of f(α) so that) f(α) = a0,

then we get a function which is defined on a disc centred at α given by a Taylor series, i.e.

an analytic function. We have, then, removed the “removable singularity” by defining (or

redefining) f(α).

For example, sin z
z

has a singularity at 0 as it is not defined there. But the function

f(z) =

 sin z
z

if z 6= 0

1 if z = 0

is analytic on C and

f(z) = 1− z2

6
+

z4

120
− z6

7!
+ · · ·

is its Taylor series about 0, valid for all z ∈ C.

B. ISOLATED ESSENTIAL SINGULARITY.

Definition 11.5 If an 6= 0 for infinitely many n < 0, (so that infinitely many of the

coefficients bn are non-zero i.e. there are infinitely many negative powers of (z−α) with

non-zero coefficient in the Laurent expansion) then f has an isolated essential singularity

at α.

For example, e1/z and sin
(

1
z

)
are both analytic on the punctured disc

D′ = {z ∈ C : 0 < |z|}, and so z = 0 is an isolated singularity of e1/z and of sin
(

1
z

)
. For

z 6= 0,

e
1
z = 1 +

1

1!z
+

1

2!z2
+

1

3!z3
+ · · · ,

sin
(

1
z

)
=

1

z
− 1

3!z3
+

1

5!z5
− · · · .
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Thus e1/z and sin
(

1
z

)
both have isolated essential singularities at the origin.

Note The even negative powers of z in the Laurent expansion of sin
(

1
z

)
about the origin

all have coefficient zero. However, there are still an infinite number of negative powers

with non-zero coefficient.

C. POLE.

Definition 11.6 If we can find k ∈ N such that a−k 6= 0 and an = 0 for n < −k, then

f is said to have a pole of order k at α.

In this case bk 6= 0 and bn = 0 for all n > k and the Laurent series contains only a

finite number of negative powers of (z − α) with non-zero coefficients.

The Laurent series looks like

a−k
(z − α)k

+
a−k+1

(z − α)k−1
+ · · ·+ a−1

(z − α)
+ a0 + a1(z − α) + · · · .

For example, for z 6= 0,
sinh z

z4
=

1

z3
+

1
6

z
+

z

120
+ · · ·

and so sinh z
z4 has a pole of order 3 at the origin. Note that 0 is an isolated singularity as

the function is analytic on the punctured disc D′ = {z ∈ C : 0 < |z|}.
Note that sinh z has a zero to order 1 at the origin and z4 has a zero to order 4. The

quotient
sinh z

z4
therefore has a zero of order −3 in some sense. Let’s formalise this idea.

Theorem 11.7 The function f has a pole of order k at α if and only if f(z) can be

expressed in the form

f(z) =
g(z)

(z − α)k

in some punctured disc D′ = {z ∈ C : 0 < |z−α| < R}, (R > 0) where, g is analytic and

non-zero in the disc D = D′ ∪ {α}. �

Proof. (i) “Only if” Suppose that f has a pole of order k at z = α. Then f(z) has a

Laurent expansion in some punctured disc ∆′ = {z ∈ C : 0 < |z − α| < r} (r > 0) about

α. For 0 < |z − α| < r this Laurent expansion is of the form

f(z) =
a−k

(z − α)k
+

a−k+1

(z − α)k−1
+ · · ·

=
1

(z − α)k
(a−k + a−k+1(z − α) + · · · )

=
1

(z − α)k
g(z),

say, where g is analytic in ∆ = ∆′ ∪ {α} and g(α) = a−k 6= 0. Since g(α) 6= 0 it follows

by continuity that g is analytic and non-zero in some neighbourhood D ⊆ ∆ of α. So if

f has a pole of order k at α then, we can express f(z) in the form

f(z) =
g(z)

(z − α)k
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in some punctured disc D′ = D \ {α} about α, where g is analytic and non-zero in D.

(ii) “If” Suppose that

f(z) =
g(z)

(z − α)k
(1)

in D′ where, g is analytic and non-zero in the disc D = D′ ∪{α}. Then g(z) has a Taylor

series expansion

g(z) = c0 + c1(z − α) + c2(z − α)2 + · · ·+ ck(z − α)k + ck+1(z − α)k+1 + · · ·

valid in D where, c0 = g(α) 6= 0. It follows from (1) that

f(z) =
g(z)

(z − α)k
=

c0

(z − α)k
+

c1

(z − α)k−1
+ · · ·+ ck + ck+1(z − α) · · ·

in D′ where, c0 6= 0. Hence the function f has a pole of order k at α. �

This result suggests that there is a connection between zeros and poles. This is indeed

true as the next result illustrates.

Theorem 11.8 If the function f has a zero of order k at α, then 1
f

has a pole of order

k at α.

Proof. If f has a zero of order k at α, then we can express f(z) in the form

f(z) = (z − α)kg(z), (1)

in some disc D = {z ∈ C : |z − α| < R}, R > 0, where g is analytic and non-zero in D.

So the function h = 1
g

is analytic and non-zero in D. Hence in the punctured disc

D′ = D \ {α},
1

f(z)
=

1

(z − α)k
1

g(z)
=

h(z)

(z − α)k
.

Hence f has a pole of order k at α. �

Corollary 11.9 If the function f has a zero of order m at α and the function g has a

zero of order n at α, then

(i) f
g

has a pole of order (n−m) at α if n > m;

(i) f
g

has a removable singularity at α if n ≤ m .

Proof. Since the functions f and g have zeros of order m and n respectively at α, We

can write

f(z) = (z − α)mh(z) and g(z) = (z − α)mk(z) (1)

in some disc D = {z ∈ C : |z − α| < r} (r > 0) about α, where the functions h and k are

analytic and non-zero in D.

From (1) we see that, for 0 < |z − α| < r,

f(z)

g(z)
=

(z − α)m h(z)

(z − α)n k(z)
=

(z − α)m

(z − α)n
j(z), (2)
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where j = h
k

is analytic and non-zero in D.

Case(i) If n > m, we see from (2) that,

f(z)

g(z)
=

j(z)

(z − α)n−m

in the punctured disc D′ = D \ {α} and f
g

has a pole of order (n−m) at α.

Case(ii) If n ≤ m, we see from (2) that,

f(z)

g(z)
= (z − α)m−nj(z)

in the punctured disc D′ = D \ {α} and f
g

has a removable singularity at α. �

Definition 11.10 If k = 1, we say that α is a simple pole.

11.6 Examples

1. Find all the singularities in the complex plane of each of the following functions:

(i)
1

1 + z2
, (ii)

sin z

z2
; (iii)

1

ez − 1
;

and classify them.

2. Determine the singularity of
cot z

z
at the origin.

3. Explain how Laurent expansions are used to classify isolated singularities.

Find all the singularities in the complex plane of each of the following functions and

classify them, giving reasons for your answers.

In each case find the residue at each of the singularities:

(i) cos

(
1

z − 1

)
, (ii) z cos

(
1

z − 1

)
.

Solutions.

1. (i) We see that 1
1+z2 is analytic in C \ {± i} and so has isolated singularities at ± i.

Now 1 + z2 = (z − i)(z + i) and so (1 + z2) has zeros of order 1 at the points ± i.
Thus 1

1+z2 has simple poles at ± i.

(ii) We see that sin z
z2 is analytic on C \ {0} and so 0 is an isolated singularity. Now

sin z has a zero of order 1 at the origin and z2 has a zero of order 2 at the origin.

Hence by Corollary 11.9 sin z
z2 has a simple pole at the origin.

(iii) We first note that ez = 1 if and only if z = 2nπi, where n is an integer. Let

f(z) = ez − 1. Then f(2nπi) = 0, f ′(2nπi) = [ez]z=2nπi = e2nπi = 1 6= 0. Thus f
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has zeros of order 1 at the points 2nπi(n ∈ Z).

Hence 1
f

has isolated singularities at the points 2nπi(n ∈ Z) and these are simple

poles by Theorem 11.8

2. Let

h(z) =
cot z

z
=

cos z

z sin z
=
f(z)

g(z)
where f(z) = cos z , g(z) = z sin z .

Then the function h is analytic on the punctured disc {z ∈ C : 0 < |z| < π} and

so h has a isolated singularity at the origin. Now sin z has a zero of order 1 at the

origin and, therefore, g has a zero of order 2 at the origin. By theorem 11.8, 1
g

has a pole of order 2 at the origin. Hence h = f
g

has a pole of order 2 i.e. a double

pole at the origin since f is analytic in C and f(0) = cos 0 6= 0.

3. Suppose that f has an isolated singularity at α. Then f(z) has a Laurent series

expansion

f(z) =
∞∑

n=−∞

an(z − α)n =
∞∑
n=1

bn
(z − α)n

+
∞∑
n=0

an(z − α)n ,

valid in some punctured disc about α, where bn = a−n for all positive integers n.

A. REMOVABLE SINGULARITY.

If an = 0 for all n < 0, (so that bn = 0 for all positive integers n, i.e. all the negative

powers of (z − α) in the Laurent expansion have coefficient 0) then α is called a

removable singularity.

B. ISOLATED ESSENTIAL SINGULARITY.

If an 6= 0 for infinitely many n < 0, (so that infinitely many of the coefficients bn are

non-zero i.e. there are infinitely many negative powers of (z − α) with non-zero

coefficient in the Laurent expansion) then f has an isolated essential singularity at α.

C. POLE.

If we can find k ∈ N such that a−k 6= 0 and an = 0 for n < −k, then f is said to

have a pole of order k at α.

Let

g(z) = cos

(
1

z − 1

)
h(z) = z cos

(
1

z − 1

)
.

Then g and h are both analytic in C\{1}. For z 6= 1,

g(z) = cos

(
1

z − 1

)
= 1− 1

2!

(
1

z − 1

)2

+
1

4!

(
1

z − 1

)4

− · · · ,
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and

h(z) = [(z − 1) + 1] cos

(
1

z − 1

)
= [(z − 1) + 1]

[
1− 1

2!

(
1

z − 1

)2

+
1

4!

(
1

z − 1

)4

− · · ·

]

= 1 + (z − 1)− 1

2!

(
1

z − 1

)2

− 1

2!

(
1

z − 1

)
+

1

4!

(
1

z − 1

)4

+
1

4!

(
1

z − 1

)3

− · · · .

These are the Laurent expansions of g(z) and h(z) about the isolated singularity at

1. They are both valid in C\{1} and

Res{g; 1} = 0 , Res{h; 1} = − 1
2!

= −1
2
.

11.7 Quick ways of calculating residues at poles

Theorem 11.11 1. Suppose that f has a pole of order k at α. Then

Res {f ;α} =
1

(k − 1)!
lim
z→α

dk−1

dzk−1
[(z − α)kf(z)]

2. If f = g
h

where g and h are analytic at α and g(α) 6= 0, h(α) = 0, h′(α) 6= 0 (so h

has a simple zero at α), then f has a simple pole at α and

Res {f ;α} =
g(α)

h′(α)
.

Proof.

1. Since f has a pole of order k at α, it is analytic in some punctured disc

D∗ = {z ∈ C : 0 < |z−α| < r} for some r > 0. In D∗, f(z) has a Laurent expansion

of the form

f(z) =
a−k

(z − α)k
+

a−k+1

(z − α)(k−1)
+ · · ·+ a−1

(z − α)
+
∞∑
n=0

an(z − α)n ,

where a−k 6= 0 since the pole is of order k. Thus in D∗, i.e. for 0 < |z − α| < r, we

have

(z − α)kf(z) = a−k + a−k+1(z − α) + · · ·+ a−1(z − α)k−1 + · · · .

Differentiate k − 1 times to get

dk−1

dzk−1

[
(z − α)kf(z)

]
= (k − 1)! a−1 + k! a0(z − α) + · · ·

and let z → α to get

Res {f ;α} = a−1 =
1

(k − 1)!
lim
z→α

dk−1

dzk−1

[
(z − α)kf(z)

]
.
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Note. This shortcut will work when f(z) is given by a formula involving

a fraction with an obvious factor (z − α)n in the denominator.

In other cases you will need to find a Laurent expansion and pick out the

coefficient a−1 .

2. As h(α) = 0, h′(α) 6= 0, h has a simple zero at z = α. Thus 1
h

has a simple pole at

α. As g is analytic and non-zero at α, it follows that g
h

has a simple pole at α. Use

(1) to find the residue at α with k = 1. Then, using the relation h(α) = 0, and the

algebra of limits,

Res { g
h

;α} = lim
z→α

d0

dz0

[
(z − α)

g(z)

h(z)

]
= lim

z→α

(z − α)g(z)

(h(z)− h(α))
= lim

z→α

g(z)
h(z)−h(α)

z−α

=
g(α)

h′(α)
.

�

These are important results, which you will find extremely useful when

solving problems. They often provide an easy alternative to finding a residue

by using a Laurent expansion and should be remembered if you wish to avoid

a lot of unnecessary hard work. You have been warned!!!

11.8 Examples

Find the singularities in the complex plane of the following and calculate the residues at

each of them:

(i)
1

1 + z2
, (ii)

1

ez − 1
, (iii)

ez

(z − 1)2
, (iv)

1

(1 + z2)9
, (v)

sin z

z10
.

Solutions.

(i) Let f(z) = 1
1+z2 . We know that f is analytic in C \ {± i} and has simple poles at ± i

(see examples - section 11.8). Take

g(z) = 1 , h(z) = 1 + z2 , so that h′(z) = 2z , g(i) = 1 , h(i) = 0 , h′(i) = 2i .

Thus

Res{f ; i} =
g(i)

h′(i)
=

1

2i

by Theorem 11.11 part (2). Similarly,

Res{f ;−i} =
g(−i)
h′(−i)

= − 1

2i
.

(ii) Let k(z) = 1
ez−1

. We know that k is analytic in C except for simple poles at the

points 2nπi (n ∈ Z) (see examples - section 11.8) . Thus by Theorem 11.11 part (2),

Res{k; 2nπi} =

[
1

d
dz

(ez − 1)

]
z=2nπi

=

[
1

ez

]
z=2nπi

= 1.
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(iii) Let m(z) = ez

(z−1)2 . Then m is analytic on C except for a singularity at the point 1.

Now (z − 1)2e−z has a zero of order 2 at z = 1 and so its reciprocal m has a double pole

at 1. Using Theorem 11.11 part (1) with k = 2 and α = 1 gives,

Res{m : 1} =
1

(2− 1)!
lim
z→1

d

dz

[
(z − 1)2 ez

(z − 1)2

]
= lim

z→1

d(ez)

dz
= e.

(iv) Let p(z) = 1
(1+z2)9 . Then the function p is analytic on C except for isolated

singularities at ± i.
Since (1 + z2)9 = (z + i)9(z − i)9 has zeros of order 9 at ± i, we see that 1

(1+z2)9 has poles

of order 9 at ± i, i.e. m has poles of order 9 at ± i . Using Theorem 11.11 part (1) with

k = 9 gives,

Res{p ; i} =
1

8!
lim
z→i

d8

dz8

[
(z − i)9 1

(1 + z2)9

]
=

1

8!
lim
z→i

d8

dz8

1

(z + i)9

=
1

8!

(−9)(−10)(−11)(−12)(−13)(−14)(−15)(−16)

(i+ i)17

=
16!

(8!)2217i
.

Similarly,

Res{p ;−i} =
1

8!
lim
z→−i

d8

dz8

[
(z + i)9 1

(1 + z2)9

]
=

1

8!
lim
z→−i

d8

dz8

1

(z − i)9

=
1

8!

(−9)(−10)(−11)(−12)(−13)(−14)(−15)(−16)

(−i− i)17

= − 16!

(8!)2217i
.

(v) Let q(z) = sin z
z10 . Then q is analytic in C except for an isolated singularity. Now

sin z has a zero of order 1 at the origin and z10 has a zero of order 10 at the origin. From

Corollary 11.9, we see that q has a pole of order 9 at the origin and the shortcut won’t

be easy to use. In this case it will be easier to use a Laurent expansion. For z 6= 0,

sin z

z10
=

1

z9
− 1

3!z7
+

1

5!z5
− 1

7!z3
+

1

9!z
− z

11!
+ · · ·

and Res{q; 0} is clearly 1
9!

.

Note that Theorem 11.11 part(1) is very messy to apply on this problem.

12 The Residue Theorem

Let D be a simply connected region containing a simple positively oriented contour γ.

Suppose f is analytic on D except for finitely many singularities β1, . . . , βn, none of which
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lie on γ. Then∫
γ

f(z)dz = 2πi× (sum of residues of f at the singularities of f inside γ).

Proof. (i) Suppose γ contains exactly one singularity (at β1). Then there is some disc

∆ = {z ∈ C : |z − β1| < R} inside γ. Thus f is analytic in the punctured disc

∆′ = ∆ \ {β1} = {z ∈ C : 0 < |z − β1| < R}.

γ

Cr
.
β1

∆

Hence f(z) has a Laurent expansion

f(z) =
∞∑

n=−∞

an(z − β1)n

valid in ∆′, where

an =
1

2πi

∫
Cr

f(z)

(z − β1)n+1
dz (n = 0,±1,±2, · · · )

and Cr is any circular contour z = β1 + reit (0 ≤ t ≤ 2π) with 0 < r < R. In particular

a−1 = 1
2πi

∫
Cr
f(z) dz

i.e. Res{f ; β1} =
1

2πi

∫
Cr

f(z) dz.

Now the function f is analytic on a region containing Cr, γ and the region between them.

By Theorem 9.1 ∫
γ

f(z) dz =

∫
Cr

f(z) dz = 2πiRes{f ; β1} . (1)

(ii) Now suppose γ contains a finite number of singularities at β1, β2, · · · , βn. Draw extra

paths as in the diagram below, to produce n simple contours γ1, γ2, · · · γn, such that the

contour γr contains exactly one singularity (viz. the one at βr) for r = 1, 2, · · · , n and∫
γ

f(z) dz =
n∑
r=1

∫
γr

f(z) dz.
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Using the previous part, we see from (1), that∫
γr

f(z) dz = 2πiRes{f ; βr} .

Hence ∫
γ

f(z) dz = 2πi
n∑
r=1

Res{f ; βr} .

�

12.1 Examples

1. Evaluate

∫
c

dz

z2(z − 3)
where c : z = 71eit (0 ≤ t ≤ 2π).

2. Evaluate

∫
c

dz

z4 + 1
, where c denotes the semi-circular contour consisting of the

straight line from −2 to 2 along the real axis, followed by the semicircle z = 2eit

(0 ≤ t ≤ π) of radius 2 in the upper half plane from 2 back to −2.

3. Let γ be the square contour with vertices −3, −3i, 3, 3i described in the anti-

clockwise direction. Evaluate

(i)

∫
γ

z3 cos(1/z) dz , (ii)

∫
γ

cos(1/z) dz .

Solutions.

1. Let

f(z) =
1

z2(z − 3)
.

Then f is analytic in C \ {0, 3}. Now z2(z − 3) has a zero of order 2 at the origin

and a simple zero at the point z = 3.
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−71 713

c

Hence f has a double pole at the origin and a simple pole at z = 3. Both these

singularities lie inside the contour c, which is a simple contour described in the

positive direction. Now

Res{f ; 0} =
1

1!
lim
z→0

d

dz

(
z2 × 1

z2(z − 3)

)
=

(
−1

(z − 3)2

)
z=0

= − 1

9
,

Res{f ; 3} =

(
1
z2

d
dz

(z − 3)

)
z=3

=
1

9

By Cauchy’s Residue Theorem∫
c

dz

z2(z − 3)
= 2πi (Res{f ; 0}+ Res{f ; 3}) = 0.

2. Let

g(z) =
1

z4 + 1
.

Then g is analytic in C except for the four points at which z4 + 1 = 0. Now z4 + 1

has simple zeros at the points exp (± πi
4

), exp (± 3πi
4

) and, hence, g has simple poles,

at exp (± πi
4

), exp (± 3πi
4

) .

2−2

The simple poles at exp (πi
4

) , exp (3πi
4

) lie inside the contour whereas the other two

lie in the lower half plane, so are outside the contour. Moreover c is a simple contour

described in the positive direction. Now

Res{g ; exp (πi
4

)} =

(
1

d
dz

(z4 + 1)

)
z=exp (πi

4
)

=

(
1

4z3

)
z=exp (πi

4
)

=
1

4e
3πi
4

=
−eπi4

4
;

Res{g ; exp (3πi
4

)} =

(
1

d
dz

(z4 + 1)

)
z=exp ( 3πi

4
)

=

(
1

4z3

)
z=exp ( 3πi

4
)

=
1

4e
9πi
4

=
e
−πi

4

4
.
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Thus the sum of the residues is

Res{g ; exp (πi
4

)}+ Res{g ; exp (3πi
4

)} = 1
4
(e−

πi
4 − eπi4 ) = −1

4
.2i sin π

4
= −i

2
√

2
.

By Cauchy’s Residue Theorem∫
c

dz

z4 + 1
= 2πi× −i

2
√

2
=

π√
2
.
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3. Let

h(z) = z3 cos (1/z) , k(z) = cos (1/z) .

Then h and k are both analytic in C \ {0} and have isolated essential singularities

at the origin.

Now the origin lies inside the contour γ, which is a simple contour described in the

positive direction. Now. for z 6= 0,

z3 cos(1/z) = z3

(
1− 1

z2 2!
+

1

z4 4!
− · · ·

)
= z3 − z

2!
+

1

z 4!
− · · · ,

cos(1/z) =

(
1− 1

z2 2!
+

1

z4 4!
− · · ·

)
.

Thus Res{h; 0} = 1
4!

= 1
24

and Res{k; 0} = 0.

(i) By Cauchy’s Residue Theorem
∫
γ
h(z) dz =

∫
γ
z3 cos(1/z) dz = 2πi

24
= πi

12
.

(ii) By Cauchy’s Residue Theorem
∫
γ
k(z) dz =

∫
γ

cos(1/z) dz = 0.

12.2 Application to the evaluation of certain real integrals

Now we explain how complex integration helps us evaluate certain real integrals.

Integrals of the form
∫∞
−∞ φ(x) cosλx dx ,

∫∞
−∞ φ(x) sinλx dx ,

∫∞
0
φ(x) cosλx dx ,∫∞

0
φ(x) sinλx dx , where φ is a rational function and λ is a positive real number

Integrals of this form are evaluated by integrating

f(z) = φ(z) eiλz

around a suitable contour. The method is illustrated in the following example.

Example. Show that ∫ ∞
−∞

cosx

x2 + 1
dx =

π

e
.

Deduce that ∫ ∞
0

cosx

x2 + 1
dx =

π

2e
.

Solution.

Let

p(z) = 1, q(z) = z2 + 1, φ(z) =
p(z)

q(z)
, f(z) = φ(z)eiz =

1

z2 + 1
eiz.
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Then the function f is analytic in C except for simple poles at ± i.

We use the contour γ shown below

R−R L

ΓR

i

−i

consisting of the straight line segment L from −R to R followed by the semi-circle ΓR

given by z = Reit(0 ≤ t ≤ π), where R > 1. Now f is analytic in C except for simple

poles at ± i, neither of which lie on γ. By the Cauchy’s Residue Theorem∫
γ

f(z) dz = 2πiRes{f ; i} , (1)

since the pole at i is inside γ and the pole at −i is outside. Now

Res{f ; i} =

[
eiz

d
dz

(z2 + 1)

]
z=i

=
e−1

2i
=

1

2ie
.

By (1) ∫
L

f(z) dz +

∫
ΓR

f(z) dz =

∫
γ

f(z) dz =
2πi

2ie
=
π

e

i.e.

∫ R

−R
f(x) dx+

∫
ΓR

f(z) dz =
π

e
. (2)

We now show that
∫

ΓR
f(z) dz → 0 as R→∞.

By definition ∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ π

0

1

R2e2it + 1
eiR(cos t+i sin t) iReit dt

∣∣∣∣
≤

∫ π

0

∣∣∣∣ iReit

R2e2it + 1
eiR(cos t+i sin t)

∣∣∣∣ dt
≤

∫ π

0

R

R2 − 1
e−R sin t dt

≤
∫ π

0

R

R2 − 1
dt =

πR

R2 − 1
.

Thus
∣∣∣∫ΓR

f(z) dz
∣∣∣→ 0 as R→∞.

Letting R→∞ in (2) gives

lim
R→∞

∫ R

−R
f(x) dx = lim

R→∞

∫ R

−R

1

x2 + 1
eix dx =

π

e
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and equating real parts gives

lim
R→∞

∫ R

−R

cosx

1 + x2
dx =

π

e
.

Since we know that
∫∞
−∞

cosx
x2+1

dx exists the limit above gives its value

i.e.

∫ ∞
−∞

cosx

x2 + 1
dx =

π

e
.

Using the substitution t = −x we see that∫ 0

−∞

cosx

1 + x2
dx =

∫ ∞
0

cos(−t)
1 + t2

dt =

∫ ∞
0

cos t

1 + t2
dt.

Thus ∫ ∞
0

cosx

1 + x2
dx =

1

2

∫ ∞
−∞

cosx

1 + x2
dx =

π

2e
.

Notes.

1. This method gives lim
R→∞

∫ R

−R
f(x) dx. However

∫∞
−∞ f(x) dx is defined to be

lim
R, S→∞

∫ R

−S
f(x) dx

provided the limit exists and is finite, where R, S →∞ independently. Thus the

existence of limR→∞
∫ R
−R f(x) dx does not guarantee the existence of

∫∞
−∞ f(x) dx.

For example,
∫ R
−R x dx = 0 and so limR→∞

∫ R
−R f(x) dx = 0, but

∫∞
−∞ x dx does not

exist.

We can get round this problem by modifying the contour and using the contour

shown below.

R−S

L1

L2

ΓR

ΓS

We would, however have to show that
∫

ΓR
f(z) dz → 0 as R→∞,

∫
ΓS
f(z) dz → 0

as S →∞ and
∫
L1
f(z) dz → 0 as R, S →∞.

2. If we do several examples, we will have to use the same method again and again

to deal with the integrals along the circular arcs and the part of the imaginary

axis. What is called for here is a shortcut. The next theorem will provide this.

This will save you a lot of work in practice , but you must remember that the

underlying idea is to evaluate the real integral by integrating a suitable

complex function round a suitable contour using the Residue Theorem.
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Theorem 12.1 Suppose that

φ(z) =
p(z)

q(z)
and f(z) = φ(z) eiλz ,

where λ ∈ R, and p and q are polynomials with no common factor other than 1. Suppose

also that the polynomial q is non-zero on the real axis (i.e. none of the singularities

of the rational function φ lie on the real axis.)

If the degree of the polynomial q is greater that the degree of the polynomial p and λ > 0,

then ∫ ∞
−∞

φ(x)eiλx dx = 2πi
k∑
r=1

Res {f ; zr} , (1)

where z1, z2, · · · zk are the zeros of the polynomial q in the upper half-plane

H = {z ∈ C : Im z > 0} (i.e. z1, z2, · · · zk are the singularities of f in the upper half-

plane H.)

From (1) ∫ ∞
−∞

φ(x) cosλx dx = Re

(
2πi

k∑
r=1

Res {f ; zr}

)
,

and ∫ ∞
−∞

φ(x) sinλx dx = Im

(
2πi

k∑
r=1

Res {f ; zr}

)
.

Before proving this result we need two Lemmas, which are given below.

Lemma 12.2 For 0 < θ ≤ π
2
,

2

π
≤ sin θ

θ
.

Proof. Let

g(θ) = sin θ − 2
π
θ.

Then

g′(θ) = cos θ − 2
π

(2)

1
2
π

π
2

c

y = cos θ

y

θ

y = g(θ)

c π
2

y

θ

Now let c = cos−1( 2
π
). Then 0 < c < π

2
and g′(θ) ≥ 0 when 0 ≤ θ ≤ c. Thus g is

increasing on [0, c] and so g(θ) ≥ g(0) = 0 on [0, c] i.e. sin θ
θ
≥ 2

π
on (0, c].

Similarly g is decreasing on [c, π
2
] because g′(θ) ≤ 0 on [c, π

2
] and so g(θ) ≥ g(π

2
) = 0 on

[c, π
2
] giving sin θ

θ
≥ 2

π
on (c, π

2
]. �
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Corollary 12.3 For any positive real number R,

−R sin θ ≤ −2Rθ

π
(0 < θ ≤ π

2
).

Lemma 12.4 Suppose that the function φ is analytic on the region D = {z ∈ C : |z| > r}
for some r > 0. Let ΓR be given by

z = Reit (θ1 ≤ t ≤ θ2) ,

where 0 ≤ θ1 < θ2 ≤ π and R > r. Let M(R) be the maximum value of |φ(z)| on ΓR and

let λ be a positive real number. If M(R)→ 0 as R→∞, then

IR =

∫
ΓR

φ(z) eiλz dz → 0 as R→∞ .

Proof. Using corollary 12.3, we see that

|IR| =
∣∣∣∫ΓR

φ(z) eiλz dz
∣∣∣ =

∣∣∣∫ θ2θ1 φ(Reit) eiλR(cos t+i sin t)iReit dt
∣∣∣

≤
∫ θ2
θ1

∣∣φ(Reit) eiλR(cos t+i sin t)iReit
∣∣ dt ≤ M(R)

∫ θ2
θ1
Re−λR sin t dt

≤ RM(R)
∫ π

0
e−λR sin t dt = 2RM(R)

∫ π
2

0
e−λR sin t dt

≤ 2RM(R)
∫ π

2

0
e−

2λRt
π dt = M(R)

[
−π
λ
e−

2λRt
π

]π
2

0

= π
λ
M(R)[1− e−λR]→ 0 as R→∞ .

�

Lemma 12.5 Suppose that the function φ is analytic on the region D = {z ∈ C : |z| > r}
for some r > 0. Let L1 be the straight line segment from iR to iS on the imaginary axis,

where R, S > r. Let λ be a positive real number and let t ∈ R. If |φ(it)| → 0 as t → ∞,

then

IR =

∫
L1

φ(z) eiλz dz → 0 as R, S →∞ .

Proof. Since |φ(it)| → 0 as t→∞, there exists a real number r∗ ≥ r such that |φ(it)| < 1

for all t > r∗. Thus for R, S > r∗,∣∣∣∣∫
L1

φ(z)eiλz dz

∣∣∣∣ ≤ ∣∣∣∣∫ S

R

∣∣φ(it) e−λt i
∣∣ dt∣∣∣∣ ≤ ∣∣∣∣∫ S

R

e−λt dt

∣∣∣∣ =

∣∣∣∣− 1

n

[
e−λR − e−λS

]∣∣∣∣→ 0

as R, S →∞. �

We now return to the proof of Theorem 12.1.

Proof. (Theorem 12.1) Suppose that all the zeros of the polynomial q lie in the closed

disc D∗ = {z ∈ C : |z| ≤ R∗}. Let R, S > R∗ and let C be the contour shown below.
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R−S

L1

L2

ΓR

ΓS

Thus

C = ΓR + L1 + ΓS + L2 ,

where ΓR is given by z = Reit (0 ≤ t ≤ π
2
), ΓS is given by z = Seit (π

2
≤ t ≤ π), L1 is the

imaginary axis from iR to iS and L2 is the real axis from −S to R. Hence∫
C

f(z) dz =

∫
ΓR

f(z) dz +

∫
L1

f(z) dz +

∫
ΓS

f(z) dz +

∫
L2

f(z) dz (1)

By Cauchy’s Residue Theorem∫
C

f(z) dz = 2πi
k∑
r=1

Res{f ; zr} . (2)

By Lemma 12.4∫
ΓR

f(z) dz → 0 as R→∞ ,

∫
ΓS

f(z) dz → 0 as S →∞ . (3)

By Lemma 12.5 ∫
L1

f(z) dz → 0 as R, S →∞ . (4)

From (1), (2), (3), (4) we see that∫
L2

f(z) dz =

∫ R

−S
φ(t)eiλt dt→ 2πi

k∑
r=1

Res{f ; zr} as R, S →∞ .

Thus ∫ ∞
−∞

φ(t)eiλt dt = 2πi
k∑
r=1

Res{f ; zr} .

Equating real and imaginary parts gives the final results in the theorem. �

12.3 Examples

1. Evaluate
∫∞
−∞

x sinπx
x2+2x+5

dx.

2. Evaluate
∫∞

0
cosπx

(1+x2)2 dx.

3. Let α > 0. Evaluate
∫∞

0
cosαx
1+x2 dx. By using a suitable value for α and a standard

result, deduce that ∫ ∞
0

cos2 x

1 + x2
dx =

π

4e2
(1 + e2).
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Solutions.

1. Let

p(z) = z, q(z) = z2 + 2z + 5, φ(z) =
p(z)

q(z)
, f(z) = φ(z)eiπz =

zeiπz

z2 + 1
.

Then

(i) q(z) = z2 + 2z+ 5 = (z+ 1)2 + 4 and so the polynomial q is non-zero on the real

axis,

(ii) the degree of the polynomial q > the degree of the polynomial p,

(iii) the function f is analytic in C except for simple poles at −1 ± 2i. The only

singularity of f in the upper half -plane H = {z ∈ C : Im z > 0} is the simple pole

at −1 + 2i.

Now

Res{f ;−1 + 2i} =

(
zeiπz

d
dz

(z2 + 2z + 5)

)
z=−1+2i

=

(
zeiπz

(2z + 2)

)
z=−1+2i

=
(−1 + 2i)eiπ(−1+2i)

4i
=

(−1 + 2i)e−iπ e−2π

4i
= −(−1 + 2i)e−2π

4i
.

By theorem 12.1∫ ∞
−∞

x

x2 + 2x+ 5
eiπx dx =

∫ ∞
−∞

φ(x)eiπx dx = 2πiRes{f ;−1 + 2i}

= 2πi

[
−(−1 + 2i)e−2π

4i

]
=
π

2
e−2π (1− 2i).

Equating imaginary parts gives∫ ∞
−∞

x sinx

x2 + 2x+ 5
dx = −π e−2π .

2. Let

p(z) = 1, q(z) = (z2 + 1)2, φ(z) =
p(z)

q(z)
, f(z) = φ(z)eiπz =

eiπz

(z2 + 1)2
.

Then

(i) the polynomial q is non-zero on the real axis,

(ii) the degree of the polynomial q > the degree of the polynomial p,

(iii) the function f is analytic in C except for double poles at ± i. The only

singularity of f in the upper half -plane H = {z ∈ C : Im z > 0} is the double pole

at i.
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Now

Res{f ; i} =
1

1!
lim
z→i

d

dz

(
(z − i)2f(z)

)
= lim

z→i

d

dz

(
(z − i)2 eiπz

(z − i)2(z + i)2

)
= lim

z→i

d

dz

(
eiπz

(z + i)2

)
= lim

z→i

(
iπeiπz

(z + i)2
− 2 eiπz

(z + i)3

)
=

iπe−π

4i2
− 2e−π

8i3
= − i e−π (π + 1)

4
.

By Theorem 12.1,∫ ∞
−∞

1

(1 + x2)2
eiπx dx =

∫ ∞
−∞

φ(x)eiπx dx = 2πiRes{f ; i}

= 2πi×
(
− i e

−π (π + 1)

4

)
=

π

2
e−π (π + 1)

and equating real parts gives∫ ∞
−∞

cosπx

(1 + x2)2
dx =

π

2
e−π (π + 1).

Using the substitution t = −x we see that∫ 0

−∞

cos πx

(1 + x2)2
dx =

∫ ∞
0

cos(−πt)
(1 + t2)2

dt =

∫ ∞
0

cos πt

(1 + t2)2
dt .

Thus ∫ ∞
0

cosπx

(1 + x2)2
dx =

1

2

∫ ∞
−∞

cosπx

(1 + x2)2
dx =

π

4
e−π (π + 1).

3. Let

p(z) = 1, q(z) = z2 + 1, φ(z) =
p(z)

q(z)
, f(z) = φ(z)eiαz =

eiαz

z2 + 1
.

Then

(i) the polynomial q is non-zero on the real axis,

(ii) the degree of the polynomial q > the degree of the polynomial p,

(iii) the function f is analytic in C except for simple poles at ± i. The only

singularity of f in the upper half -plane H = {z ∈ C : Im z > 0} is the simple pole

at i.

(iv) α > 0.

Now

Res{f ; i} =

(
eiαz

d
dz

(z2 + 1)

)
z=i

=
e−α

2i
.

By Theorem 12.1∫ ∞
−∞

1

1 + x2
eiαx dx =

∫ ∞
−∞

φ(x)eiαx dx = 2πiRes{f ; i} ) = 2πi× e−α

2i
= πe−α
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and equating real parts gives ∫ ∞
−∞

cosαx

1 + x2
dx = πe−α.

Using the substitution t = −x we see that∫ 0

−∞

cosαx

1 + x2
dx =

∫ ∞
0

cos(−αt)
1 + t2

dt =

∫ ∞
0

cosαt

1 + t2
dt.

Thus ∫ ∞
0

cosαx

1 + x2
dx =

1

2

∫ ∞
−∞

cosαx

1 + x2
dx =

πe−α

2
. (1)

We notice that ∫ ∞
0

cos2 x

1 + x2
dx =

1

2

∫ ∞
0

1 + cos 2x

1 + x2
dx. (2)

Putting α = 2 in equation (1) gives,∫ ∞
0

cos 2x

1 + x2
dx =

πe−2

2
=

π

2e2
(3)

and ∫ ∞
0

1

1 + x2
dx =

[
tan−1 x

]∞
0

=
π

2
. (4)

From equations (1), (2), (3), (4) it follows that∫ ∞
0

cos2 x

1 + x2
dx =

π

4

(
1

e2
+ 1

)
=
π(1 + e2)

4e2
.
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