Today: Consequences of the Cauchy-Riemann Equations

We ended last time by proving:
Theorem (Cauchy-Riemann Equations)
For $z=x+i y$, write $f(z)=u(x, y)+i v(x, y)$ with u, v real.
Then if f is differentiable at z_{0}, we have:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \quad \text { at } z_{0}
$$

Today: what does this tell us about f ?

1. Silly, but easy to examine: If u, v are related in any other way, f is highly constrained
2. Important, but not traditionally examined: f is a conformal mapping
3. Important, examined: The real and imaginary parts of f are harmonic

Section 5.8: When u and v are related

- Cauchy-Riemann relates between $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$
- If we have more relations, then f is very constrained

Example (Similar to those in notes)

Suppose that f is differentiable on a connected domain, and that its real and imaginary parts satisfy $u=v^{2}$. Prove that f is constant.

Holomorphic functions are conformal maps

In MAS211 you looked at the derivative of a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ as a linear map $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and hence as a matrix. The entries are the partial derivatives, so for $f: \mathbb{C} \rightarrow \mathbb{C}$

$$
D f=\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]
$$

If $f: \mathbb{C} \rightarrow \mathbb{C}$ is differentiable at z_{0}, this linear map corresponds to multiplication by the complex number $f^{\prime}\left(z_{0}\right)=a+b i$. The Cauchy-Riemann equations just enforce this:

$$
D f\left(z_{0}\right)=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]=r\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Hence the derivative is a rotation + a scaling, and preserves angles. Such a map from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called conformal.

Motivation for harmonic functions: important PDEs

The Laplacian operator, written ∇^{2} or Δ, acts on functions $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\nabla^{2} g=\nabla \cdot \nabla g=\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}
$$

and occurs in many PDEs important in applied math.

Examples

Let $f(x, y, t)$ be a function of two space variables and one time variable.

- The heat equation $\frac{\partial f}{\partial t}=\nabla^{2} f$
- The wave equation $\frac{\partial^{2} f}{\partial t^{2}}=\nabla^{2} f$

A steady state solution to either of these equations would be $\nabla^{2} f=0$.

Harmonic Functions

Definition

A function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is harmonic if $\nabla^{2} f=0$
Lemma
Let $f(z)=u(x, y)+i v(x, y)$ be analytic on a domain D. Then u and v are harmonic on D

Proof.
Cauchy-Riemann equations + mixed partials are equal.
This gives us lots of harmonic functions.
Does this give us all harmonic functions?
Given a harmonic function $u(x, y)$ on a domain, is it the real part of an analytic function $f(z)$?
Yes, on a simply-connected domain.
'From now on, we treat f as the main function, and do not split into $\operatorname{Re}(f)$ and $\operatorname{Im}(f)^{\prime}$

Me learning complex analysis:

When is u are the real part of analytic functions?

From the 2012-2013 exam
(iii) Find all the functions k analytic on \mathbb{C} with $\operatorname{Re}(k(x+i y))=2 x-\sinh x \sin y$, giving an explicit expression for $k(z)$ in terms of z. Show that you have found all the functions satisfying the above conditions.
(6 marks)

The real part of an analytic function is harmonic First, check $\nabla^{2} u=0$. If not, the answer is no.

If it is, find f^{\prime} using Cauchy-Riemann

$$
f^{\prime}=\frac{\partial}{\partial x}(u(x, y)+i v(x, y))=u_{x}+i v_{x}=u_{x}-i u_{y}
$$

This gives us f^{\prime} in terms of x and y. We'd like to write f^{\prime} in terms of z, and integrate to find f. But how?

Maybe we need a clever little trick....

Dr. Hart's "Clever little trick"

Given:

We know f^{\prime} in terms of x and y, want it terms of z.
Guess:
Set $y=0$; to get $f^{\prime}(x)$ in terms of just x. Integrate to get $f(x)$. Guess that this is actually formula for $f(z)$

Check:
Show that $\operatorname{Re}(f)=u(x, y)$
To find all such k :
Lemma
Suppose that f and g are analytic on a region D and that $\operatorname{Re}(f)=\operatorname{Re}(g)$ on D. Then $f=g+$ ia for some $a \in \mathbb{R}$.

