Ended last time computing line integrals

We finished one basic example.
Do we want another easy example?

A mysterious (but important!) example
Let $n \in \mathbb{Z}$

$$
\int_{C_{r}(a)} \frac{1}{(z-a)^{n}} \mathrm{~d} z= \begin{cases}0 & n \neq 1 \\ 2 \pi i & n=1\end{cases}
$$

Independent of a and r, works for n negative, too!

Will revisit throughout module:

$$
\int_{C_{r}(a)} \frac{1}{(z-a)^{n}} \mathrm{~d} z= \begin{cases}0 & n \neq 1 \\ 2 \pi i & n=1\end{cases}
$$

Coming attractions - conceptual explanation!

- Antiderivatives explain why the answer is zero unless $n=1$
- Cauchy's theorem explains why it's independent of r
- Residue theorem reduces any integral to this computation!

Section 5: Derivatives. First: limits, continuity

Definition (Limits)

Let f be defined on some punctured neighborhood of z_{0}. Then we say

$$
\lim _{z \rightarrow z_{0}} f(x)=a
$$

if for all $\varepsilon>0$ there exists a $\delta>0$ such that if $0<\left|z-z_{0}\right|<\delta$, then $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$.

Definition (Continuous)

Let f be defined in a neighborhood of a. We say f is continuous at a if $\lim _{z \rightarrow a} f(z)=f(a)$.

These are identical to limit/continuity for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
Doesn't use the multiplicative structure of \mathbb{C}.

The definition of the derivative looks the same

Definition (The derivative)
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined on a neighbourhood of z_{0}. The derivative of f at z_{0}, if it exists, is

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Could also use the definition with $h \rightarrow 0$, but now $h \in \mathbb{C}$. Many familiar things follow:

- $\frac{d}{d z} z^{n}=n z^{n-1}$
- $\frac{d}{d z} e^{z}=e^{z}$
- The derivative is linear
- Chain rule, product rule, quotient rule
- ...

$B U T$ some very nice functions aren't differentiable

Example
Let $f(z)=\operatorname{Re}(z)$. Then f is not differentiable at any point in \mathbb{C}.

