


Line integrals: Another example

Consider the following two paths between 0 and 1 + i :

I α goes along the circle of radius 1 centered at i

I β goes along the parabola y = x2.

Compute:

1.
∫
α Re(z)dz

2.
∫
β Re(z)dz

3.
∫
α zdz

4.
∫
β zdz

What do you notice?



Derivatives review

Definition
Let f be defined on some open subset U ⊂ C. f is differentiable at
z0 ∈ U if

f ′(z0) := lim
z→z0

f (z)− f (z0)

z − z0

exists.

Looks like normal derivative, but...

I Numerator and denominator will be complex numbers

I Have to get the same limit no matter how we approach z0

Definition
A function f is holomorphic (the notes use analytic, which I’ll rant
about later) at z0 if it is differentiable at every point in some
neighborhood around z0.
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Cauchy-Riemann Equations

Theorem (Cauchy-Riemann Equations)

Suppose f (z) = u(x , y) + iv(x , y) is differentiable at z0. Then at

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
at z0

Proof.
Compute f ′(z0) in two different ways:

I Keeping x constant

I Keeping y constant



More on Cauchy-Riemann

Complex formulation:

Sometimes convenient to write both Cauchy-Riemann equations as
one complex equation:

∂f

∂x
= −i ∂f

∂y

Extension (non-examinable): Analytic functions are conformal

In MAS211 you looked at the derivative of a map f : Rn → Rm as
a linear map Df : Rn → Rm, and hence as a matrix. If f : C→ C
is differentiable at z0, this linear map corresponds to multiplication
by a complex number z = a + bi , and in matrix form this is:

Df (z0) =

[
a −b
b a

]
= r

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
Hence the derivative is a rotation + a scaling, and preserves angles



Motivation for an ”application”: PDEs

The Laplacian operator, written ∇2 or ∆, acts on functions
g : R2 → R by

∇2g = ∇ · ∇g =
∂2g

∂x2
+
∂2g

∂y2

and occurs in many PDEs important in applied math.

Examples

Let f (x , y , t) be a function of two space variables and one time
variable.

I The heat equation ∂f
∂t = ∇2f

I The wave equation ∂2f
∂t2

= ∇2f

A steady state solution to either of these equations would be
∇2f = 0.



Harmonic Functions

Definition
A function u : R2 → R is harmonic if ∇2f = 0

Lemma
Let f (z) = u(x , y) + iv(x , y) be analytic on a domain D. Then u
and v are harmonic on D

Proof.
Cauchy-Riemann equations + mixed partials are equal.

This gives us lots of harmonic functions.

Does this give us all harmonic functions?

Given a harmonic function u(x , y) on a domain, is it the real part
of an analytic function f (z)?

Complete answer next time!


