Last time: Harmonic Functions

The Laplacian operator, written $abla^2$ or Δ , acts on functions $g:\mathbb{R}^2\to\mathbb{R}$ by

$$\nabla^2 g = \nabla \cdot \nabla g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Definition

A function $u : \mathbb{R}^2 \to \mathbb{R}$ is *harmonic* if $\nabla^2 f = 0$.

Lemma

Let f(z) = u(x, y) + iv(x, y) be analytic on a domain D. Then u and v are harmonic on D.

Can you go backwards?

Yes, if *u* defined on a *simply-connected* region.

When is *u* are the real part of analytic functions?

From the 2012-2013 exam

(iii) Find all the functions k analytic on \mathbb{C} with $\operatorname{Re}(k(x+iy)) = 2x - \sinh x \sin y$, giving an explicit expression for k(z) in terms of z. Show that you have found **all** the functions satisfying the above conditions. (6 marks)

The real part of an analytic function is harmonic First, check $\nabla^2 u = 0$. If not, the answer is no.

If it is, find f' using Cauchy-Riemann

$$f' = \frac{\partial}{\partial x} \Big(u(x, y) + iv(x, y) \Big) = u_x + iv_x = u_x - iu_y$$

This gives us f' in terms of x and y. We'd *like* to write f' in terms of z, and integrate to find f. But how?

Maybe we need a clever little trick....

Dr. Hart's "Clever little trick"

Given:

We know f' in terms of x and y, want it terms of z.

Guess:

Set y = 0; to get f'(x) in terms of just x. Integrate to get f(x). Guess that this is actually formula for f(z)

Check:

Show that $\operatorname{Re}(f) = u(x, y)$

To find all such k:

Lemma

```
Suppose that f and g are analytic on a region D and that \operatorname{Re}(f) = \operatorname{Re}(g) on D. Then f = g + ia for some a \in \mathbb{R}.
```

A last application of Cauchy-Riemann

- Cauchy-Riemann relates between Re(f) and Im(f)
- ▶ If we have more relations, then *f* is *very* constrained

Example from the notes:

The function f is analytic in \mathbb{C} and its real and imaginary parts u and v satisfy

$$ue^v = 12$$

at all points in \mathbb{C} . Prove that f is constant.

Next up - Section 6: Power series

- Not much different than real power series, so largely review
- Spoiler: analytic functions have convergent power series