Last week: Laurent series, residues, singularities

A Laurent series is like a power series but we're allowed to have negative terms.

Theorem (Laurent's Theorem)

Suppose that f has an isolated singularity at α , so f analytic on $D' = \{z : 0 < |z - \alpha| < R\}$. Then f can be represented by a Laurent series around α that converges on D':

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - \alpha)^n$$

- a_1 is called the *residue of f at* α
- $\int_{C_r(\alpha)} f(z) dz = a_{-1}$ for small r
- f has a removable singularity/pole/essential singularity if it
 has no/finite / infinite a_{-k} ≠ 0

What's left:

Today Residue Theorem Tomorrow Applying Residue Theorem to Real Integrals Next Monday Residue Theorem tricks:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Tuesday Application: Laplace Transform? Revision? Week 12 Revision?

No office hours this week due to the strike.

At last!

Theorem (The Residue Theorem)

Let D be a simply connected region containing a simple positively oriented contour γ . Suppose f is analytic on D except for finitely many singularities β_1, \ldots, β_n , none of which like on γ . Then

$$\int_\gamma f(z) dz = 2\pi i imes ($$
sum of the residues of f at the eta_i inside $\gamma)$

Proof.

The proof is really putting together things we've already done:

- Deform contour so one singularity in each piece
- Expand f in Laurent series
- Use formula for a_{-1} / our first important example

Dated meme, but we put our tree up this weekend

Every mother on Christmas morning Every lecturer when they prove the big theorem of the module

Using the Residue Theorem

Show you understand and check hypotheses!

- 1. Find the isolated singularities (bad points) β_i of f
- 2. Draw picture showing γ and bad points to see which are inside
- 3. Find the residues of the singularities inside γ

Examples; let $c = 5e^{it}$ $(0 \le t \le 2\pi)$

1.
$$\int_{c} \frac{dz}{z^{2}(z-3)^{3}}$$

2.
$$\int_{c} \frac{dz}{\tan(z)}$$

3.
$$\int_{c} z^{3} \cos(1/z) dz$$

Finding the residues can be a lot of work.

Laurent Expansion often easiest. For simple poles use shortcut.