Analytic Functions have Taylor Series

Theorem

Let f be analytic on $\Delta = \{z : |z - z_0| < r\}$, where r > 0. Then f has a Taylor expansion about z_0 that is valid on all of Δ :

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Proof.

CIF + Expand 1/(w-z) as geometric series in $(z-z_0)/(w-z_0)$ Warning: Usual role of w and z in CIF reversed for this proof.

Cool corollary

The radius of convergence around z_0 is the distance to the first point w where f isn't analytic.

In particular, if f is entire (analytic on all of \mathbb{C}), then its Taylor expansions converge everywhere!

Calculating Taylor series

When possible, avoid taking derivatives

Too much work.

Instead...

- ▶ Build from Taylor series you know: 1/(1-z), exp, sin, . . .
- ▶ Helps psychologically to substitute $w = z z_0$
- ► Can differentiate / integrate Taylor series term by term

Examples: find Taylor series of...

- 1. 1/(z+1) around z=2
- 2. $z^3 \cosh(z^2)$ around z = 0
- 3. $1/(1-z)^2$ around z=0

Zeroes of functions

Definition

Let f be analytic on a region D. We say $w \in D$ is a zero of f if f(w) = 0. We say w is a zero of order k if $f(w) = f'(w) = \cdots = f^{(k-1)}(w) = 0$, but $f^{(k)}(w) \neq 0$.

Example

 $z\sin(z)$ has a zero of order 2 at 0, and a zero of order 1 at $k\pi$ for $0 \neq k \in \mathbb{Z}$

Lemma

f(z) has a zero of order k at a if and only if $f(z) = (z - a)^k g(z)$, where g(z) is analytic on nonzero on an open set containing a.

Corollary

If f(z) has a zero of order m at a, and g(z) has a zero of order n at a, then $f \cdot g$ has a zero of order m + n at k.