Complex Analysis: What's all this, then?

Up until now: derivatives and integrals of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ Derivatives and integrals of $f: \mathbb{C} \rightarrow \mathbb{C}$

- Easier than real case!
- Analysis not a prerequisite - not focused on doing proofs
- Using theorems correctly, building on each other

Theorem (Fundamental Theorem of Algebra)

Let $p(z) \in \mathbb{C}[x]$ be a nonconstant polynomial. Then there is a $w \in \mathbb{C}$ with $p(w)=0$.

The Residue Theorem has bonkers applications:

$$
\int_{-\infty}^{\infty} \frac{\cos (\pi x)}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi}{2} e^{-\pi}(\pi+1)
$$

Calculating Fourier and Laplace transforms. Number Theory.

Written Resources

Main resource: Dr. Hart's notes

- Fine-tuned toward the exam
- Many worked examples

Recommended texts: extra material + viewpoints, more rigour

- Beck et al (free and legal online!)
- Priestley (pdf through library)
- Stewart and Tall (old edition is cheap online)

Slides

- Posted online before lecture; space to write notes
- Roughly follow Dr. Hart's notes

Assessment and feedback

100% of marks from final exam

- Exam questions generally very similar to past years
- All questions mandatory, probably 4
- Forthcoming exam page will have more detail

Exercises and feedback

- Exercise and hints sheets on Blackboard DO DURING TERM
- Will collect a few to mark for feedback
- Worked solutions to all exercises will go up shortly after that

Interactive "clicker questions" in lecture

- Using TurningPoint app/webpage
- Everyone gets instant feedback on how things are going

Review of complex numbers

The complex plane $\mathbb{C}=\{z: z=x+i y ; x, y \in \mathbb{R}\}$.

- $x=\operatorname{Re}(z)$ is called the real part
- $y=\operatorname{lm}(z)$ is called the imaginary part
- $\bar{z}=x-i y$ is called the complex conjugate
- $|z|=\sqrt{x^{2}+y^{2}}$ is called the modulus of z

Complex numbers form a field
Can add, multiple, subtract by any complex number, and divide by nonzero complex numbers.

A few tricks

$\mathbb{C} \cong \mathbb{R}^{2}$

An equation $z=w$ of complex numbers can be viewed as a pair of equations between real numbers:

$$
z=w \Longleftrightarrow \operatorname{Re}(z)=\operatorname{Re}(w) \text { and } \operatorname{Im}(z)=\operatorname{Im}(w)
$$

Why care about \bar{z} ?

$$
|z|^{2}=z \cdot \bar{z}
$$

This lets us find z^{-1}.
Example
What's $\frac{1-i}{3+4 i}$?

Geometry of complex numbers
Theorem (Euler)

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Polar form / "modulus-argument" form
If we write $z=x+i y$ in polar coordinates:

$$
z=r \cos (\theta)+i r \sin (\theta)=r e^{i \theta}
$$

Multiplying and dividing easier in polar form!

$$
\begin{gathered}
\left(r e^{i \theta}\right)\left(s e^{i \phi}\right)=(r s) e^{i(\theta+\phi)} \\
\frac{r e^{i \theta}}{s e^{i \phi}}=(r / s) e^{i(\theta-\phi)}
\end{gathered}
$$

Powers and roots

Theorem (De Moivre)
Let $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$. Then

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

Proof.

Apply Euler's theorem to both sides of $\left(e^{i \theta}\right)^{n}=e^{i n \theta}$, or prove directly for $n \in \mathbb{N}$ using induction and trig formulas.

Theorem
A complex number $z=r e^{i \theta}$ has precisely n nth roots:

$$
\sqrt[n]{r} e^{i(\theta+2 k \pi) / n} \quad k \in\{0,1, \ldots, n-1\}
$$

