Actually computing line integrals

$$
\int_{\gamma} f(z) \mathrm{d} z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t
$$

Example

Let γ be the path that's a straight line from 0 to 1 , and then a straight line from 1 to $2+i$. Compute:

$$
\begin{gathered}
\int_{\gamma} \operatorname{Re}(z) \mathrm{d} z \\
\int_{\gamma} \operatorname{Im}(z) \mathrm{d} z \\
\int_{\gamma} z \mathrm{~d} z
\end{gathered}
$$

The most important example

Recall: $C_{r}(a)$ is the anti-clockwise circle of radius r around a. An mysterious computation:
Let $n \in \mathbb{Z}$

$$
\int_{C_{r}(a)} \frac{1}{(z-a)^{\mathrm{n}}} \mathrm{~d} z= \begin{cases}0 & n \neq 1 \\ 2 \pi i & n=1\end{cases}
$$

Independent of a and r, works for n negative, too!
Coming attractions - conceptual explanation!

- Antiderivatives explain why the answer is zero unless $n=1$
- Cauchy's theorem explains why it's independent of r
- Residue theorem reduces any integral to this computation!

Clicker Session Turning Point app or ttpoll.eu

Seen on twitter - "Chaotic evil" maths

It's not "wrong", but it is painful.
Some definitions in the notes are similar...

Types of Sets - a topology taster

The following Definition in the notes is NOT STANDARD USAGE. I won't use it.
Definition (4.1 in notes)
A neighbourhood of $z_{0} \in \mathbb{C}$ is an open disc about z_{0}, i.e., it's of the form

$$
\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}
$$

for some $\delta>0$.
Definition (4.2 in notes. This definition is standard)
A set $D \subseteq \mathbb{C}$ is said to be open if for each point $z_{0} \in D$ there's an open disc contained in D and containing z_{0}.
Easier to think in terms of pictures...
"Can't be cut in two" vs. "Can get from place to place"

Two possible intuitions behind being connected.
Definition (Connected)
A subset $X \subseteq \mathbb{C}$ is connected if we can't find two nonempty open sets $U, V \subset \mathbb{C}$ with $U \cap V=\emptyset$ and $X \subset U \cup V$. Intuition: If $X \subset U \cap V$, then $X \cap U, X \cap V$ cuts X into two pieces.
Definition (Path-connected)
A subset $X \subseteq \mathbb{C}$ is called path-connected if for any two points $x, y \in X$ we can find a path $\gamma \in X$ with initial point x and final point y

- In general, path-connected \Longrightarrow connected, but not converse
- If X is open, X is connected $\Longleftrightarrow X$ is path-connected.

A little bit more

Many of our Theorems are going to hold for nice open sets, so we develop shorthand for recording this.

Definition (4.4 in notes)
A non-empty, open, connected set is called a region.
Definition (4.5 in notes)
A region D is said to be simply connected if it has no 'holes'; i.e., if every point in the interior of any simple contour in D is contained in D.

Mathematical culture:
We're implicitly using the Jordan Curve theorem - that a simple curve closed in the plane has an inside and an outside.

Why is this hard?

Pick a point in the middle - is it inside, or outside?

Actually computing line integrals

$$
\int_{\gamma} f(z) \mathrm{d} z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t
$$

Example

Let γ be the path that's a straight line from 0 to 1 , and then a straight line from 1 to $2+i$. Compute:

$$
\begin{gathered}
\int_{\gamma} \operatorname{Re}(z) \mathrm{d} z \\
\int_{\gamma} \operatorname{Im}(z) \mathrm{d} z \\
\int_{\gamma} z \mathrm{~d} z
\end{gathered}
$$

Types of Sets - a topology taster

The following Definition in the notes is NOT STANDARD USAGE. I won't use it.
Definition (4.1 in notes)
A neighbourhood of $z_{0} \in \mathbb{C}$ is an open disc about z_{0}, i.e., it's of the form

$$
\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}
$$

for some $\delta>0$.
Definition (4.2 in notes. This definition is standard)
A set $D \subseteq \mathbb{C}$ is said to be open if for each point $z_{0} \in D$ there's an open disc contained in D and containing z_{0}.
Easier to think in terms of pictures...
"Can't be cut in two" vs. "Can get from place to place"

Two possible intuitions behind being connected.
Definition (Connected)
A subset $X \subseteq \mathbb{C}$ is connected if we can't find two nonempty open sets $U, V \subset \mathbb{C}$ with $U \cap V=\emptyset$ and $X \subset U \cup V$. Intuition: If $X \subset U \cap V$, then $X \cap U, X \cap V$ cuts X into two pieces.
Definition (Path-connected)
A subset $X \subseteq \mathbb{C}$ is called path-connected if for any two points $x, y \in X$ we can find a path $\gamma \in X$ with initial point x and final point y

- In general, path-connected \Longrightarrow connected, but not converse
- If X is open, X is connected $\Longleftrightarrow X$ is path-connected.

A little bit more

Many of our Theorems are going to hold for nice open sets, so we develop shorthand for recording this.

Definition (4.4 in notes)
A non-empty, open, connected set is called a region.
Definition (4.5 in notes)
A region D is said to be simply connected if it has no 'holes'; i.e., if every point in the interior of any simple contour in D is contained in D.

Mathematical culture:
We're implicitly using the Jordan Curve theorem - that a simple curve closed in the plane has an inside and an outside.

Why is this hard?

