Computing real integrals with the Residue Theorem

Basic idea is very flexible:

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{R, S \rightarrow \infty} \int_{-R}^{S} f(x) d x
$$

- Include the finite integral as part of a contour integral
- Calculate the contour integral using residue theorem
- As $R, S \rightarrow \infty$ contributions of other parts of contour $\rightarrow 0$

ML Estimates often work for last point
Basic example / sanity check:

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x=\pi
$$

Specific formulation appearing in notes on exam

Older exams wanted you to memorize this \square

Theorem
Let $f(z)=\frac{p(z)}{q(z)} e^{i \lambda z}$ where $\lambda \in \mathbb{R}, \lambda>0, p(z), q(z)$ are polynomials with $\operatorname{deg} q>\operatorname{deg} p$, no common zeroes, and q has no real roots. Then

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} e^{i \lambda x} d x=\sum_{i=1}^{k} \operatorname{Res}\left\{f ; z_{k}\right\}
$$

where $z_{1}, z_{2}, \ldots, z_{k}$ are the zeros of q in the upper half plane.
Proof.
Follow plan from last slide; if $\operatorname{deg}(q)+1<\operatorname{deg}(p)$ can just use ML-estimates, otherwise we need to sweat a bit more.

Applying our specific formulation to compute real integrals
Take real and imaginary parts of our integrand If p, q have real coefficients, and x is real, then

$$
\operatorname{Re} \frac{p(x)}{q(x)} e^{i \lambda x}=\frac{p(x)}{q(x)} \cos (\lambda x) \quad \operatorname{Im} \frac{p(x)}{q(x)} e^{i \lambda x}=\frac{p(x)}{q(x)} \sin (\lambda x)
$$

Examples from Section 12.3 of Notes

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{x \sin (\pi x)}{x^{2}+2 x+5} d x=-\pi e^{-2 \pi} \\
& \int_{0}^{\infty} \frac{\cos (\pi x)}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi(\pi+1) e^{-\pi}}{4} \\
& \int_{0}^{\infty} \frac{\cos ^{2}(x)}{1+x^{2}} d x=\frac{\pi\left(1+e^{2}\right)}{4 e^{2}}
\end{aligned}
$$

