Answer FOUR questions. You are advised NOT to answer more than four questions: if you do, only your best four will be counted.

1 (i) Explain why any alkane $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ is a tree. How many isomers does $\mathrm{C}_{6} \mathrm{H}_{14}$ have? Draw the structure of the carbon atoms in each isomer. (5 marks)
(ii) Consider the graph G given below. Is G Eulerian? Is G Hamiltonian? Is G bipartite? Justify your answers.
(6 marks)

(iii) Prove that the following set of instant insanity cubes have no solution.
(9 marks)

(iv) Give the Prüfer code for the labelled tree T below.

Consider the following directed, weighted graph:

(i) What is the length s of the shortest path from A to I ? For which edges e will shortening e by 0.1 change s ? For which edges e will making e longer by 0.1 change s ?
(8 marks)
(ii) What is the length ℓ of the longest path from A to l ? For which edges e will shortening e by 0.1 change ℓ ? For which edges e will making e longer by 0.1 change ℓ ?
(iii) The graph Γ is shown below. Find the chromatic number and the chromatic index of Γ.
(5 marks)

(iv) A tree T has one vertex v of degree 4, and another vertex w of degree 3 . Prove that T has at least 5 leaves.

3 (i) Weights are given for edges between 7 vertices, labelled $A-G$.

A						
11	B					
17	9	C				
17	12	14	D			
11	17	15	10	E		
16	9	9	10	8	F	
20	10	21	19	8	12	G

Find a minimal weight spanning tree. What is the total weight of this spanning tree?
(ii) In total, how many spanning trees have the same minimum weight?
(4 marks)
(iii) Now, suppose the vertices represent towns, and the weights represent the cost of traveling between towns. A traveling salesperson lives in an 8th town, H. The cost of traveling from H to any town other is 25 . The traveling salesperson wants to start at H, travel to every town $A-G$ exactly once, and then return to H, as cheaply as possible. Using your result from the previous part, give a lower bound on the cost of the traveling salesperson's trip. Is this lower bound attainable? Explain.
(5 marks)
(iv) Using the nearest neighbour heuristic, starting at H and traveling first to G, give an upper bound on the cost of the cheapest trip for the traveling salesperson.
(3 marks)
(v) Draw the Petersen graph P, and prove that P is not Hamiltonian. (Hint: Suppose that P is Hamiltonian, and consider the edges not in the Hamiltonian cycle)
(8 marks)

4 (i) State Kuratowski's theorem, and use it to show that the graph G below is not planar. Draw G on the projective plane without edges crossing. Your drawing should use the labelling of the vertices given.

(ii) Define the Euler characteristic $\chi(S)$ of a closed, compact surface S and prove it is well defined. Use your drawing of G from Part (i) to calculate the Euler characteristic of the projective plane.
(iii) Consider the graph「 drawn below on the torus, with its faces labeled A through H. Give a colouring of the faces of Γ with four colours so that faces meeting along an edge have different colours. Prove that no such colouring is possible with only three colours.
(4 marks)

5 Recall that the wheel graph W_{n} consists of a copy of the cycle graph C_{n-1}, together with a central vertex v adjacent to every other vertex. Let $B W_{n}$ denote the "broken wheel" graph, which is obtained from the wheel graph W_{n} by removing one edge from the outer cycle. We have drawn W_{7} and $B W_{7}$ below:

$B W_{7}$

(i) Prove, directly from the definition, that the chromatic polynomials of W_{n} and C_{n} satisfy the identity:

$$
P_{W_{n}}(k)=k P_{C_{n-1}}(k-1)
$$

(ii) Prove that

$$
P_{B W_{n}}(k)=k(k-1)(k-2)^{n-2}
$$

(iii) Prove that

$$
P_{W_{n}}(k)=P_{B W_{n}}(k)-P_{W_{n-1}}(k)
$$

Using this, the previous part, and induction, prove that

$$
P_{W_{n}}=k(k-2)\left[(k-2)^{n-2}+(-1)^{n-1}\right]
$$

(10 marks)
(iv) A graph G has chromatic polynomial $P_{G}(k)=k^{4}-4 k^{3}+5 k^{2}-2 k$. How many vertices and edges does G have? Is G bipartite? Justify your answers.

End of Question Paper

