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Lecture 1: Introduction and Euler’s Handshaking
Lemma

Graphs

Graphs usually (but not always) are thought of showing how things are set of
things are connected together.

Definition of a graph

A graph Γ consists of:

• a set V (Γ) of vertices
• a set E(Γ) of edges

Each edge either connects two vertices of V (Γ) together, or connects a vertex to
itself.

Examples

See the slides for many picture examples, but here are some common examples:

• cities as vertices and roads connecting them as edges
• people as vertices and an edge between two people if they know each other
• atoms in a molecule as vertices, with an edge between them if they are

connected by a covalent bond
• countries on a map as vertices, and shared borders as edges

A few more definitions

There are two features of graphs that are sometimes convenient to not allow.

A loop is an edge that connects a vertex to itself, and a multiple edge is when
there is more than one edge connecting the same two vertices. A graph without
these features is called simple.

We say two vertices are adjacent if there is an edge between them.

The degree or valency of a vertex in a simple graph is the number of vertices it
is adjacent to.
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A first question

Suppose you are at a party with six other people, so that there are seven people
total at the party. Is it possible that everybody knows exactly three other people
at the party?

To translate this into graph theory, we make the people vertices, and put an
edge between two people if they know each other. We are then asking if a graph
exists with seven vertices, where each vertex has degree three.

It turns out that this is not possible; one way to prove this would be doing a
case by case analysis of trying to make such a graph, but such proofs are usually
long, messy, and not particularly enlightening.

Instead, we argued as follows: suppose that everyone at the party shook hands
with the people they knew, but not with the people they don’t know. How many
handshakes would occur?

It is immediate from the definition that the number of handshakes would be the
number of edges in the graph. But we could also count the number of handshakes
in another way: each person is going to shake hands three times, so people will
be involved in handshakes 3*7=21 times. But since each handshake involves two
people, this should be twice the number of handshakes. From this reasoning, we
see there should be 21/2=10.5 edges in the graph, which is absurd, and so we
see that such a party is not possible.

The argument given above easily generalizes to give

Euler’s handshaking lemma:

The sum of the degrees of the vertices of a graph is twice the number of edges of
the graph:∑

v∈V (Γ) d(v) = 2|E(Γ)|

Proof:

Each edge has two ends; each end contributes 1 to the degree of one vertex, and
hence to the sum of all the degrees. �

Graph theory in Chemistry

In organic chemistry, atoms are joined together by covalent bonds; we represent
this in a graph with the atoms as vertices and the edges representing the bonds.
The location of the element on the periodic table determines the valency of the
vertices corresponding to that element:

3



• Hydrogen (H) and Fluorine (F) have degree 1
• Oxygen (O) and Sulfur (S) have degree 2
• Nitrogen (N) and Phosphorous (P) have degree 3
• Carbon (C) has degree 4

Usually, most of the atoms involved are carbon and hydrogen. Carbon atoms
are not labelled with a C, but just left blank, while hydrogen atoms are left off
completely. One can then complete the full structure of the molecule using the
valency of each vertex.

Graphs coming from organic chemistry do not have to be simple – sometimes
there are double bonds, where a pair of carbon atoms have two edges between
them.

Definition: degree sequence

The degree sequence of a graph is just the list (with multiplicity) of the degrees
of all the vertices.

So, knowing the chemical composition of a molecule determines the
degree sequence of its corresponding graph. However, it is possible
that the same set of atoms may be put together into a molecule in
more than one different ways. In terms of graphs, this corresponds
to “different” graphs that have the same degree sequence.

Lecture 2: Instant Insanity, Isomorphisms

Instant Insanity

A concrete, nontrivial application of graph theory is as a tool to solve the puzzle
“instant insanity”, known sometimes as the four cubes problem.

Basic setup

In this puzzle, one is given four cubes. Each face of each cube is painted one
of four different colours: blue, green, red or yellow. The goal is to line the four
cubes up in a row, so that along the four long edges (front, top, back, bottom)
each of the four colours appears eactly once.

Depending on how the cubes are coloured, this may be not be possible, or there
may be many such possibilities. In the original instant insanity, there is exactly
one solution. I have made a video that explains how to use graph theory to show
the solution to the original onstant insanity.

4



There are many variations on Instant Insanity, discussion of which can be found,
for here and here. There’s also a commercial for the game.

An impossible example

In lecture, I walked through proving that the following example has no solutions.
The work was done on the board and not in the slides, but I will present the
work here.

The four cubes in question are:

Enter graph theory

We will now construct a graph that encodes the important part of the structure
of the cubes.

The vertices of the graph will be the four colors, B, G, R and Y. We will put an
edge between two colors each time they appear as opposite faces on a cube, and
we will label that edge with a number 1-4 denoting which cube the two opposite
faces appear. So from the first cube, there will be a loop at B, and edge between
G and R, and an edge between Y and R.

The graph corresponding to the four cubes above is the following:

Proving our cubes were impossible

How does this graph help us study the solutions of the Instanity Insanity puzzle?
Suppose we had an arrangement of the cubes that was a solution. Then, from
each cube, pick the edge representing the colors facing front and back on that
cube. These four edges are a subgraph of our original graph, with one edge of
each label, since we picked one edge from each cube. Furthermore, since we
assumed the arrangement of cubes was a solution of instant insanity, each color
appears once on the front face and once on the back. In terms of our subgraph,
this translates into asking that each vertex has degree two.

We got another subgraph satisfying these two properties by looking at the
faces on the top and bottom for each cube and taking the corresponding edges.
Furthermore, these two subgraphs do not have any edges in common.

Thus, given a solution to the instant insanity problem, we found a pair of
subgraphs S1, S2 satisfying:

1. Each subgraph Si has one edge with each label 1,2,3,4
2. Every vertex of Si has degree 2
3. No edge of the original graph is used in both S1 and S2
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As an exercise, one can check that given a pair of subgraphs satisfying 1-3, one
can produce a solution to the instant insanity puzzle.

Thus, to show the set of cubes we are currently examining does not have a
solution, we need to show that the graph does not have two subgraphs satisfying
properties 1-3.

To do, this, we catalog all graphs satisfying properties 1-2. If every vertex has
degree 2, either

1. Every vertex has a loop
2. There is one vertex with a loop, and the rest are in a triangle
3. There are two vertices with loops and a double edge between the other

two vertices
4. There are two pairs of double edges
5. All the vertices live in one four cycle

A subgraphs of type 1 is not possible, because G and R do not have loops.

For subgraphs of type 2, the only triangle is G-R-Y, and B does have loops.
The edge between Y-G must be labeled 3, which means the loop at B must be
labeled 1. This means the edge between G and R must be labeled 4 and the
edge between Y and R must be 2, giving the following subgraph:

For type 3, the only option is to have loops at B and Y and a double edge
between G and R. We see the loop at Y must be labeled 2, one of the edges
between G and R must be 4, and the loop at B and the other edge between G
and R can switch between 1 and 3, giving two possibilities:

and

For subgraphs of type 4, the only option would be to have a double edge between
B and G and another between Y and R; however, none of these edges are labeled
3 and this option is not possible.

Finally, subgraphs of type 5 cannot happen because B is only adjacent to G and
to itself; to be in a four cycle it would have two be adjacent to two vertices that
aren’t itself.

This gives three different possibilities for the subgraphs Si that satisfy properties
1 and 2. However, all three possibilities contain the the edge labeled 4 between G
and R; hence we cannot choice two of them with disjoint edges, and the instant
insanity puzzle with these cubes does not have a solution.

Isomorphisms: When are two graphs “the same”?

It is possible to draw the same graph in the plane in many different ways – e.g.,
the pentagon and the five sided star are two different ways of drawing C5.

If two graphs are “the same” in this way, we say they are isomorphic.

6



Definition

An isomorphism ϕ : G→ H of simple graphs is a bijection ϕ : V (G) → V (H)
that preserves the number of edges between vertices. That is, if v, w ∈ V (G),
then the number of edges between v and w in G is equal to the number of edges
between ϕ(v) and ϕ(w) in H.

Example

This animated gif shows several graphs isomorphic to the Petersen graph, and
demonstrates that they are isomorphic:

Graph isomorphism problem

The graph isomorphism problem is to decide whether or not two given graphs
G,H are isomorphic.

General discussion for mathematical cultural literacy

The isomorphism problem is of fundamental importance to theoretical computer
science. Apart from its practical applications, the exact difficulty of the problem
is unknown. Clearly, if the graphs are isomorphic, this fact can be easily
demonstrated and checked, which means the Graph Isomorphism is in NP.

Most problems in NP are known either to be easy (solvable in polynomial time,
P), or at least as difficult as any other problem in NP (NP complete). This is
not true of the Graph Isomorphism problem. In November of last year, Laszlo
Babai announced a quasipolynomial-time algorithm for the graph isomorphism
problem – you can read about this work in this great popular science article.

What you have to be able to do

Although solving the graph isomorphism problem for general graphs is quite
difficult, doing it for small graphs by hand is not too bad and is something you
must be able to do for the exam.

If the two graphs are actually isomorphic, you have to actually write down an
explicit isomorphism ϕ : G→ H should be given.

If they are not isomorphic, you have to prove that they are not isomorphic.
Usually this is done by giving an obstruction – something that is different between
the two graphs. One easy example is that isomorphic graphs have to have the
same number of edges and vertices.
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Another, only slightly more advanced invariant is the degree sequence of a graph
that we saw last lecture in our discussion of chemistry.

If ϕ : G→ H is an isomorphism of graphs, than we must have d(ϕ(v)) = d(v)
for all vertices v, and so the degree sequence must be preserved. However, just
because two graphs have the same degree sequences does not mean they are
isomorphic.

Lecture 3: Connectedness. Walks, trails and
paths

If the edges in a graph Γ represent connections, it is obvious to ask whether Γ as
a whole is “connected”. There are two seemingly different ways of making this
precise; today we introduce these and show that they are the same.

It may be easiest to define what it means for a graph Γ to be disconnected.

Definition: Disjoint union

Given two graphs Γ1 and Γ2, the disjoint union Γ1tΓ2 is obtained by taking the
disjoint union of both the vertices and edges of Γ1 and Γ2. So Γ1 t Γ2 consists
of a copy of Γ1 and a copy of Γ2, with no edges in between the two graphs.

Definition: Disconnected

A graph Γ is disconnected if we can write Γ = Γ1 t Γ2 for two proper (i.e., not
all of Γ) subgraphs Γ1 and Γ2.

It then makes sense to say that Γ is connected if it is not disconnected. However,
the more intuitive notion of being connected is that “you can get from any vertex
to any other”, which we now make precise.

Walks, Trails, Paths

Definition

A walk in a graph Γ is a sequence

v0, e1, v1, e2, v2, . . . , vn−1, en, vn

where - the vi are vertices - the ej are edges - edge ej goes between vertices vj−1
and vj
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Note that, when the graph Γ does not have multiple edges, it is enough to record
just the vi, but if Γ has multiple edges that just knowing the vertices does not
determine the walk.

We say that the walk is between vertices a and b if a = v0 to vertex b = vn. Thus,
it is natural to say that a graph Γ is connected if there is a walk between any
two vertices a, b ∈ Γ. We now show that this agrees with our previous definition
of connected.

Lemma

The following are equivalent:

1. Γ is connected.
2. There is a walk between any two vertices v, w ∈ V (Γ)

Proof

1 implies 2: Supppose that Γ is connected, and let v, w ∈ V (Γ); we want to show
that there is a walk from v to w.

Define S ⊂ V (Γ) to be the set of all vertices u ∈ V (Γ) so that there is a walk
from v to u; we want to show that w ∈ S.

First, observe that there are no edges from S to V (Γ) \ S. Suppose that e was
an edge between a ∈ S and b ∈ Γ \ S. Since a ∈ S, by the definition of S there
is a walk v = v0v1v2 · · · vm = a from v to a. We can add the edge e to the end
of the walk, to get a walk from v to b, and hence by definition b ∈ S.

Now suppose that w /∈ S. Then S and V (Γ) \ S are both nonempty, and
by the above there are no edges between them, and so Γ is not connected, a
contradiction.

To prove 2 implies 1, we prove the contrapositive. If Γ is not connected, then
there are two vertices v, w ∈ V (Γ) so that there is no walk from v to w.

Suppose that Γ = Γ1 t Γ2, and pick v ∈ V (Γ1), w ∈ V (Γ2). Any walk from v to
w starts in V (Γ1) and ends in V (Γ2), and so at some point there must be an
edge from a vertex in Γ1 to a vertex in Γ2, but there are no such edges �

Types of Walks

Many questions in graph theory ask whether or not a walk of a certain type
exists on a graph: we introduce some notation that will be needed for these
questions.
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We say a walk is closed if it starts and ends on the same vertex; i.e., v0 = vn.
The length of a walk is n, the number of edges in it. The distance between two
vertices v and w is the length of the shortest walk from v to w, if one exists, and
∞ if one does not exist.

Walks, trails and paths

• If the edges ei of the walk are all distinct, we call it a trail
• If the vertices vi of the walk are all distinct (except possibly v0 = vm), we

call the walk a path. The exception is to allow for the possibility of closed
paths.

Lemma

Let v, w ∈ V (Γ). The following are equivalent:

1. There is a walk from v to w.
2. There is a trail from v to w
3. There is a path from v to w.

Proof

Obviously, 3 implies 2 which implies 1, as any path is a trail, and any trail is a
walk.

That 1 implies 3 is intuitively obvious: if you repeat a vertex, then you’ve visited
someplace twice, and weren’t taking the shortest route. Let’s make this argument
mathematically precise.

Suppose we have a walk v = v0, e1, . . . , em, vm = w that is not a path. Then, we
must repeat some vertex, say vi = vk, with i < k. Then we can cut out all the
vertices and edges between vi and vk to obtain a new walk

v = v0, e1, v1, . . . , ei, vi, ek+1, vk+1, ek+2, vk+2, . . . , vm

.

Since i < k, the new walk is strictly shorter than our original walk. Since the
length of a walk is finite, if we iterate this process the result must eventually
terminate. That means all our vertices are distinct, and hence is a path. �

Lecture 4: Bridges of Konigsberg

The field of graph theory arguably began with the following question.
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The Bridges of Konigsberg

the city of Konigsberg (now Kaliningrad) was built on both sides of a river, and
contained two large islands. The 4 sectors of the city were connected by seven
bridges, as follows (picture from Wikipedia):

Figure 1: Konigsberg in Euler’s time

A group of friends enjoyed strolling through the city, and created a game: could
they take a walk in the city, crossing every bridge exactly once, and return
to where they started from? Eventually, Euler proved that such a walk is not
possible, and in doing so founded graph theory.

Eulerian Cycles

Before presenting Euler’s proof, let us formulate the question precisely in terms
of graph theory, which will also generalize the problem.

We can produce a graph ΓK , which we will callt he Kingsberg graph, that repre-
sents the city of Konigsberg as follows. There will be four vertices, representing
the four land-masses are vertices. Every bridge will be represented by an edge.

Then, the question reduces to finding a closed walk in the graph that will uses
every edge exactly once. In particular, this walk will not use any edge more than
once and hence will be a trail (though it may repeat vertices).
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Definition: Eulerian cycle

Let Γ be any graph. An Eulerian cycle or Eulerian tour is a walk in Γ that
visits every edge exactly once.

The citizens Konigsberg were asking whether an Eulerian cycle existed in ΓK .
Euler did more: he gave simple criterion to tell whether or not any connected
graph Γ has an Eulerian tour. We will now state and prove his result.

Theorem

A connected graph Γ (without loops) has an Eulerian cycle if and only if every
vertex of Γ has even degree.

Proof

First, we show this condition is necessary. Let Γ be a connected graph, and
suppose that it has an Eulerian cycle w = v0, e1, v1, . . . , en, vn. Let v be any
vertex in Γ; we must show that v has even degree. We will do this by pairing up
the edges incident to v.

Since w is a closed walked, we may assume that it does not start at v. Then
consider the first time that the walk w visits v – it will enter by some edge ei,
and leave by some other edge ei+1. We pair these two edges up.

The walk w may visit v multiple times; each time it does, it must enter from one
edge, and leave from another edge. Each time the walk w visits e, we will pair
up the edge the walk w entered with the edge w left by. Since by supposition
the walk w uses every edge of Γ exactly once, we see that every edge incident to
v will be paired up with exactly one other edge in this way, and hence v must
have even degree.

We now show that this condition is sufficient. That is, we suppose that every
vertex of Γ has even degree; we must show that Γ has an Eulerian cycle. We
will proceed by induction on the number of edges of Γ.

Any connected graph with 0 edges consists of just a vertex, and hence trivially
has an Eulerian cycle.

Now, for the inductive step, we suppose that Γ has n edges, and further suppose
that we know Euler’s theorem is true for all graphs with less than n edges – that
is, suppose that every connected graph Γ with less than n edges, all of whose
vertices have even degree has an Eulerian walk.

We first claim that Γ has some closed trail. Start at any vertex v0. Since Γ is
connected, v0 has at least one edge e1 so we start our trail with v0, e1, v1. Since
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every vertex has an even degree, there must be another edge out of v1, say e2
leading to v2.

We continue building a trail in Γ by randomly selecting an unused edge of Γ
at our current vertex. Since every vertex has even degree, and whenever our
trail visits a vertex we use up edges two at a time (coming and going), we see
that whenever we arrive at a vertex v, there must be another edge leaving it
to continue our trail – unless perhaps we hit our starting vertex v0, where we
have only used one edge up. Thus, if we randomly start building a trail we must
eventually return to our starting vertex and obtain a closed trail.

Now, given our graph Γ, we know it has some closed trail w. If w uses every
edge of Γ, we are done. If not, we consider the new graph Γ′ obtained by deleting
every edge of w (but not the vertices). Note that every vertex of Γ′ has even
degree. Second, Γ′ may not be connected, but each connected component Γ′i
of Γ′ has fewer edges that Γ and hence has an Eulerian tour ui by supposition.
Together, w and the ui visit every edge of Γ exactly once. We can stitch them
together into one closed path as follows – each ui shares at least one vertex vi

with w. We trace the path w, but the first time we visit vertex vi we insert the
path ui before continuing along w. �

Lecture 5: Hamiltonian cycles

Definition

A graph Γ is Hamilton if there exists a closed walk that visits every vertex
exactly once.

Although the definition of a Hamiltonian graph is extremely similar to an Eulerian
graph, it is much harder to determine whether a graph is Hamiltonian or not:
doing so is an NP-complete problem.

Examples

Proposition

The Petersen graph is not Hamiltonian.

Proof

Suppose the Petersen graph was Hamiltonian, and let v0−v1−v2−v3−· · ·−v9−v0
denote the Hamiltonian cycle, as we have drawn below:

13



The Petersen graph has 15 edges, and the Hamiltonian cycle uses 10 of them, so
there must be 5 edges left in the Petersen graph that are not in the Hamiltonian
cycle. The proof works by considering the possibilities for these 5 extra edges.

Let us consider the extra edge incident to v0; the others are equivalent. Since
the Petersen graph has no loops or multiple edges, this edge cannot go from v0
to itself, or to v1 or v9.

Since the Petersen graph has no triangles or 4 cycles, this edge cannot “skip” 1
or 2 vertices in the Hamiltonian cycle. More specifically, we cannot we cannot
have an edge from v0 to v2 or v8, as these make triangles, as in the dashed edges
below:

And we cannot have edges v0 to v3 or to v7, as these make 4 cycles:

Thus, the only possibility for these edges is that they “skip” 4 or 5 vertices
(skipping more than 5 vertices is the same as skipping less vertices in the other
direction). So for instance, v0 can only be connected to v4, v5 or v6 with its
extra edge.

We now claim that at least one of these extra edges must “skip” 4 vertices. If
not, then every extra edge would skip 5 vertices. Since each vertex has degree
3, there must be one extra edge through each of these vertices, connecting to
the opposite vertex. But this configuration has many four cycles – for instance,
v0 − v1 − v6 − v5 − v0. Since the Petersen graph does not have any 4 cycles, we
see this cannot occur:

Relabeling our edges if necesary, we can make the extra edge that skips the 4
cycle be the edge v0 − v4. Now, consider the extra edge at v5. This cannot skip
5, because that would make it adjacent to v0, which already has its extra edge.
Thus, it must skip 4, and be adjacent to either v9 or v1. But since each of these
are adjacent to v0, it would create a 4-cycle: either v0 − v4 − v5 − v9 − v0, or
v0 − v4 − v5 − v1 − v0.

We have drawn the edge from v0 to v4 in solid red; any of the dashed edges from
v5 create a configuration not found in the Petersen graph:

�

Partial results on Hamiltonian graphs

Although there is no complete characterisation of Hamiltonian graphs, there are
several nice sufficient conditions for a graph to be Hamiltonian;

Ore’s Theorem

Let Γ be a simple graph with n vertices such that for any two nonadjacent
vertices v and w, we have deg(v) + degw ≥ n. Then Γ is Hamiltonian.
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Proof

We will give a proof by contradiction. First, suppose that Γ were a counterexam-
ple. Adding edges to Γ preserves the condition on the degrees, and so we may
continually add edges to Γ until adding any more would create a Hamiltonian
cycle. We will thus assume that Γ is a counterexample with the maximal set of
edges.

The benefit of this is that such a Γ must have a non-closed path that visits every
vertex exactly once. To see this, add one more edge e to Γ – the resulting graph
then has a Hamiltonian cycle, which must pass through e, deleting e give the
desired path.

Let v1 − v2 − . . . vn−1 − vn be the path visiting every vertex of Γ. We will
complete the proof by showing there exists an i ∈ 3, · · · , n − 1 so that v1 is
adjacent to vi and vn is adjacent to vi−1. This completes the proof because
v1 − v2 − · · · vi−1 − vn − vn−1 − vn−2 − . . . vi − v1 is a Hamiltonian path. We
illustrate this below, with n = 9 and i = 5:

The existence of such an i follows from the pigeon hole principle. Since v1 and
vn are not adjacent by supposition, the sum of their degrees is at least n. Two
edges incident to them are accounted for v1− v2, and vn−1− vn−2, so there must
be at least n− 2 other edges incident to v1 or vn. Since Γ is simple, any such
edge out of v1 has n− 3 possibilities: v3, v4, . . . , vn−1. Similarly, there are n− 3
possibilities for an edge adjacent to vn – v2, v3, . . . , vn−2. We pair these edges
up into the possibilities we want, creating n− 3 bins. Since there are n− 2 edges
we need to distribute among these bins, one of the bins must contain at least
two, which is exactly what we needed to show.

Lecture 6: Trees

Definition

A forest is a graph with no cycles; a tree is a connected graph with no nontrivial
closed trails.

Thus, a forest is a disjoint union of trees.

Example

The following graph is a forest consisting of three trees:

The following graph is a not a tree:

Consider the two conditions of being tree: being connected, and not having any
cycles.
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Figure 2: A small forest

Figure 3: Not a graph
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The first condition is somehow saying that Γ has enough edges: to be connected,
we need a path between any two vertices, and the more edges we have, the more
likely this is to happen.

The second condition is somehow saying that Γ doesn’t have too many edges:
we don’t want cycles, and having more edges makes that more likely.

Thus, being a tree a bit of a goldilocks condition – it has just the right amount
of edges. It’s not just how many edges the graph has, though – the path graph
P4 has 4 vertices and 3 edges, and is a tree, but the disjoint union of a triangle
and a single vertex also has 4 vertices and 3 edges but is not a tree.

The following proposition summarises this discussion and makes it more precise:

Proposition

Let Γ be a graph with n vertices. The following are equivalent:

1. Γ is a tree.
2. Between any two vertices a, b ∈ V (Γ), there is a unique path.
3. Γ is connected, but removing any edge makes Γ disconnected.
4. Γ has no cycles, but adding any edges to Γ creates a cycle.
5. Γ is connected and has n− 1 edges
6. Γ has no cycles and has n− 1 edges

Proof:

We will not show all of the equivalences. Some are tricky to do directly; a few
we will put on the practice sheet.

1 implies 3

Trees are by definition connected, so we must show that removing any edge of Γ
disconnects Γ. Let a and b be two adjacent vertices, and suppose removing the
edge between them did not disconnect Γ. Then there is a path from a to b in Γ
not using the edge connecting them; adding the last edge back in makes a cycle,
a condtradiction.

3 implies 2

Since Γ is connected, there is at least one path between two vertices. If there
were two paths between a and b, then deleting any edge e that was only in one
of the paths wouldn’t disconnected Γ.
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2 implies 1

Suppose that Γ is a graph with a unique path between any two vertices. Then,
in particular Γ is connected, and so to show Γ is a tree we must show it has no
cycles.

Suppose v0, e1, v1, . . . , en, vn = v0 was a cycle in Γ. Then there are two paths
between v0 and v1 – the edge e1, or the path v1, e2, v2, . . . , vn = v0. This is a
contradiction, and hence Γ has no cycles.

We will also show that if Γ is a tree with n vertices, then Γ has n − 1 edges.
Since we know trees are connected and have no cycles, this means any of 1-3
imply 5 and 6.

We proceed by induction: the proof is obvious when n is one or two – a tree on
one vertex has no edges, and a tree on two vertices has a single edge. Thus, we
have a base case.

We now assume that all trees with at most k vertices have k − 1 edges for all
k < n and we must show that a tree with n vertices has n− 1 edges. Pick any
edge e of Γ are remove it. By 3, the result Γ \ e is disconnected.

We claim that Γ \ e consists of exactly two connected components. Pick any
two vertices a, b ∈ Γ. By 2, there is a unique path between them; if that path
contains e, there will be no path between a, b in Γ \ e, and hence they must lie
in different components of Γ \ e. If the path between a and b does not contain e,
then they will lie in the same component. Hence, if v, w are the two ends of the
edge e, then every vertex of Γ \ e has a path to either v or w, but not both.

Thus, we see Γ \ e has two components G1 and G2, each of which are trees: they
are connected, and have no cycles. Suppose G1 contain k vertices; then G2 must
have n− k vertices. By the inductive hypothesis, we know they must contain
k − 1 edges and n− k − 1 edges respectively.

The edges in Γ are e and the edges of G1 and G2, hence we see that Γ
has 1 + (k − 1) + (n− k − 1) = n− 1 edges, as desired.

The Lost Lecture 7: Leaves, chemistry, spanning
trees comments

Note: This lecture didn’t happen because I was ill; the material presented here
either has gotten absorbed into other lectures or problem sets, or won’t be
examined; I leave it here for completeness.

A useful concept when studying trees is that of a leaf:
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Definition

A leaf in a tree is a vertex of degree 1.

Lemma

Every finite tree with at least two vertices has at least two leaves.

Lemma

Every finite tree with at least two vertices has at least two leaves.

Proof 1: using paths

Suppose T is at tree. Since T has at least two vertices, at has at least one edge.
Pick any edge e, say, between a and b. If the vertex a is a leaf, we have at least
one leaf. If not, there is another edge incident to a. and we can start a path
from a away from e following this edge. As long as the end vertex of our path is
not a leaf we may continue our path, and we will never return to a vertex we
have already encountered, since trees have unique paths between vertices. Since
T is finite, the path must eventually terminate – i.e., find a leaf.

Following the same argument from the vertex b produces another leaf. �

Proof 2: using handshaking

We will use that Γ is connected, has n > 2 vertices, and n− 1 edges.

Since Γ is a tree it is connected; since it has connected and has two vertices it
cannot have any vertices of degree 0.

Thus, if we assume for a contradiction that Γ has no leaves, then every vertex
Γ had degree at least two. Since we know Γ has n vertices and n − 1 leaves,
applying the handshaking lemma gives:

2n− 2 = 2|E(Γ)| =
∑

v∈V (Γ)

d(v) ≥
∑

v∈V (Γ)

2 = 2n

a contradiction. For the inequality to hold, Γmust have at least two vertices of
degree 1. �

Leaves will play a very important role in this afternoon’s lecture on the Prüfer
code. In the meantime, we point out that the handshaking argument we give
another application of the handshaking lemma argument above. Recall that in
the last lecture we stated the following, but did not provide a full proof:
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Proposition

Let Γ be a graph with n vertices. The following are equivalent:

1. Γ is a tree.
2. Between any two vertices a, b ∈ V (Γ), there is a unique path.
3. Γ is connected, but removing any edge makes Γ disconnected.
4. Γ has no cycles, but adding any edges to Γ creates a cycle.
5. Γ is connected and has n− 1 edges
6. Γ has no cycles and has n− 1 edges

In lecture we showed that 1-3 are equivalent, and that if Γ is a tree with n
vertices, then Γ has n− 1 edges, and hence that any of 1-3 imply 5 and 6. Today
we are going to use that 5 implies 1, hence we will prove it.

Lemma

Suppose that Γ is connected and has n vertices and n− 1 edges. Then Γ is a
tree.

Proof

We will use induction. As a base case, the result is clear if n is 1 or 2. Thus, we
assume that all connected graphs with k < n vertices and k − 1 edge are trees,
and we must show that if Γ is connected and has n− 1 edges, then Γ is a tree.

Note that Γ has at least two vertices of degree 1, as the handshaking lemma
argument given above only uses the facts that Γ is connected and has the right
number of leaves.

Now suppose that v ∈ Γ has degree one, and let e be the edge incident to v. Let
Γ′ be the graph obtained by removing v and e. Then Γ′ has n− 1 vertices and
n− 2 edges. Further, since Γ was connected, we see that Γ′ is as well. Thus, by
the inductive hypothesis, Γ′ is a tree, and so Γ is as well

Chemistry Application: Alkanes

In organic chemistry, an alkane is a molecule with formula CnH2n+2. The
simplest Alkanes are methane CH4, ethane C2H6 and propane C3H8.

It appears from the graph that Alkanes are all trees; we prove that now.

Lemma

Any alkane CnH2n+2 is a tree.
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Figure 4: Alkanes

Proof

We will use that a connected graphs on m vertices with m− 1 edges is a tree.

Any graph of a molecule is necessarily connected, and so to prove an Alkane is a
tree we must count the number of vertices and edges.

There are n+ (2n+ 2) = 3n+ 2 vertices.

We count the edges using the Handshaking lemma. Carbon atoms have valency
4, and there are n of them, while Hydrogen atoms have valency 1. Thus, the
sum of all the degrees of the vertices is 6n+ 2. The number of edges is half of
these, namely 3n+ 1, which is 1 less than the number of vertices. Since to be an
atom it must be connected, we see that any Alkane is a tree. �

Isomers

Definition

Two molecules are isomers if they have the same molecular formula, but the
molecules are put together in a different way.

When there are 1, 2 or 3 carbon molecules, the only possible Alkanes is a line of
carbon molecules. The resulting chemicals are methane, ethane, and propane.
when n = 4, there are two possible alignments of the Carbon atoms: in a line,
which is butane, or in a ‘T’ shape, which is isobutane; when n = 5, there are
three different possibilities.

Around 1875, Hamilton used graph theory to count the number of isomers of
the Alkane CnH2n+2. One can forget about the placement of the hydrogen
molecules, and just count the struture of the carbon molecules; these two will
be a tree. Since the valency of Carbon is four the maximum degree of a vertex
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in these trees will be 4, and so counting isomers of CnH2n+2 is equivalent to
counting isomorphism classes of trees with n vertices, all of degree at most 4.

Lecture 8: Prüfer code

In this lecture, we will prove Cayley’s formula, using the Prüfer code. In
particular, we will give a map PC that takes in a labelled tree with n vertices,
and returns a string of n − 2 numbers, each between 1 and n, and an inverse
map Tree that takes in a string of numbers and returns a labelled tree.

The starting observation is that to write down a labelled tree is the same as
writing down its n− 1 edges. Since the vertices are ordered, each edge can be
written down by a pair of numbers in {1, . . . , n}. The Prüfer code begins by
writing down these edges in a clever ordering.

The Prüfer code

We are now ready to introduce the Prüfer code. We begin by writing down the
edges of T . The two vertices of each edge will be written down in a column,
with the parent vertex in the top row and the child vertex on the bottom row.
We record the edges in the following specific order.

First, find the lowest numbered leaf, and record its number in the bottom row.
Above it, write down the number of the vertex this leaf is adjacent to, which
we call the parent vertex. Now, delete that lowest numbered leaf and the edge
connecting it to the rest of the tree. Find the lowest leaf on the resulting vertex,
and record its number, and the number of its parent, in the next column.

Iterate this procedure until we have written down all n − 1 edges of our tree,
with the leaf numbers in the top row, and the parent numbers in the bottom
row.

The list of the first n− 2 parent numbers (i.e., all but the last), is the Prüfer
code of T .

Example

We illustrate the construction of the Prüfer code by finding the code for the
following labelled tree:

The lowest leaf is 3, which is attached to 1, so the first column goes
Parent node 1 6 6 2 2 7
Child node 3 1 4 5 6 2

Thus, the Prüfer code for the above tree is 16622.
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Reconstructing a tree from its Prüfer Code

It is clear from the above definition that the Prüfer code is a list of n−2 numbers
between 1 and n; it is not clear that any such list of numbers is obtained, nor
that any two trees give us a different set of numbers. To see this, we describe an
inverse algorithm, that constructs a tree on n vertices from a Prüfer code.

More explicitly, the inverse algorithm will take as input a Prüfer code, and from
that Prüfer code it will reconstruct the full ordered table of edges we constructed
in the Prüfer code algorithm. It should be clear from the description that the
algorithm actually reproduces this table, and not some other table, and hence
that the two algorithms are inverse to each other. This shows that the Prüfer
code is a bijection, which proves Cayley’s formula, as there are nn−2 valid Prüfer
codes on n vertices.

This algorith proceeds by figuring out the corresponding child nodes one by one.
Recall that any number in our list appeared as a parent node, and so is not a
leaf. At the first step, we deleted the smallest leaf. So the first child node is the
smallest number that does not appear on our list.

After we recorded that edge, we deleted it; thus, the second child number is the
smallest number that we haven’t

1. already used as a leaf number

2. doesn’t appear at or after the current spot as a parent.

Example

We first reconstruct the tree we did in the first example, from its code. Recall,
the Prüfer code was 1 6 6 2 2.

The lowest unused number is 3, so that is the first child.

To find the next unused number, we move to the second column. 1 only appears
in the first column, and so it is now the lowest number that doesn’t appear, and
so it goes underneath the first 6. Moving to the third column, we have already
used 1 and 3 as child nodes. The number 2 is still to appear as a parent, and so
can’t be a leaf yet, and so 4 is the first number that we haven’t used yet. Similar
reasoning gives 5 and 7 for the 4th and 5th column.

Finally, the last remaining edge connects the two nodes we have not used as
leaves yet; in this case 2 and 6.

Number of trees with a given degree sequence

The Prüfer code actually proves a stronger statement: it counts the number of
labelled trees where vertex i has degree di. More specifically:
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Corollary

The number of labelled trees on n vertices where vertex i has degree di is(
n− 2

d1 − 1, d2 − 1, . . . , dn − 1

)
= (n− 2)!

(d1 − 1)!(d2 − 1)! · · · (dn − 1)!

Proof

First, observe that vertex i of a labeled tree T has degree di if and only if i
appears di − 1 times in the Prüfer code PC(T ). This can be seen by building
the Prüfer code: each time i occurs in the Prüfer code we delete an edge incident
to i, and finally i will occur a final time as a leaf.

Then, the number of labeled trees we want to count is the number of sequences
of n − 2 numbers, where i occurs di − 1 times, which is counted by the given
multinomial coefficient.

Lecture 9: Spanning Trees, Kruskal’s algorithm

Spanning trees

Definition

Let Γ be a graph. A spanning tree of Γ is a subgraph T ⊂ Γ such that T is a
tree and T contains every vertex of Γ.

Spanning trees are useful because they are a minimal connected subgraph that
lets us get to all of Γ. For instance, if the vertices are cities and the edges are
roads, a spanning tree is a minimal set of edges that guarantee that you can get
from any one city to another.

Examples:

• The cycle graph Cn has n spanning trees obtained by deleting any one
edge.

• A spanning tree of the complete graph Kn is the same thing as a labelled
tree, so there are nn−2 such spanning trees by Cayley’s theorem.

Lemma:

Every connected graph Γ has a spanning tree.
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Proof

By our characterisation of trees, if T is connected and has no cycles, then T is a
tree. So it is enough to find a connected subgraph T of Γ that contains every
vertex.

Let H be any subgraph of Γ that is connected and contains all the vertices of Γ.
If H has a cycle, we can pick any edge e of that cycle and delete it, and H will
still be connected: any path that used e can use the rest of the cycle instead.

Thus, starting from Γ, we may repeatedly remove edges from cycles and not
disconnect Γ until there are no more cycles left; the result will be a spanning
tree. �

Introduction to optimisation problems

One motivation for introducing trees was as the “cheapest” way of connecting n
points. Here, “cheapest” just means the least number of edges. In real world
applications, not all edges are created equal. For example, consider the case
where the vertices of Γ represent cities, and the edges are roads connecting them.
If we’re looking for the shortest path between two cities, we do not just want the
least number of edges, as some roads will be longer than others, or be busy and
take longer to drive. These subtleties can be addressed with a weighted graph.

Definition

A weighted graph is a graph Γ, together with a non-negative real number w(e)
for each edge e ∈ E(Γ).

Example

Typically, weighted graphs are presented by drawing labelling each edge of the
graph with its weight:

Real world examples of weights

Even in the case where the vertices of Γ are cities and the edges are conenctions
between them, there are many possible interpretations of edges weights: - The
edge weights w(e) might represent the cost of building or maintaining the road
between the city - The edge weights migth represent the distance between the
cities - The edge weights might represent travel times between the cities - the
edge weights might represent the cost of a train/plane ticket between the cities
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Figure 5: Example of a weighted graph
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In the next few class lectures, we will discuss the following optimisation problems
for weighted graphs:

• The minimal spanning tree – finding a spanning tree T of Γ where the
total cost of the edges in T is the cheapest among all spanning trees of Γ.

• The shortest path – finding a path between two vertices of Γ, where the
total weight of all the edges in the path is minimal among all paths between
the two vertices.

• The traveling salesman problem – finding a hamiltonian cycle in a graph Γ
where the total weight of all the edges is minimal.

Kruskal’s algorithm

We now present Kruskal’s algorithm, which solves the problem of finding a
minimal weight spanning tree in a weighted graph Γ. Before discussing the
algorithn, let’s look at a toy example to get an idea of the problem.

Example

Consider the following weighted graph:

Obviously, there are three spanning trees, obtained by removing one of the three
edges. The spanning tree A-B-C has weight 7, B-C-A has weight 6, C-A-B has
weight 5, and so we have found the cheapest spanning tree.

Any finite graph will only have finitely many spanning trees, and so it is always
possible to exhaustively find all of them, compute their weights, and hence find
the cheapest. However, for large graphs there will be many spanning trees. For
example, a spanning tree of the complete graph Kn is equivalent to a labelled
tree on n vertices, and by Cayley we know there are nn−2 of these trees, which
grows faster than exponential or factorial! Thus, in practice, to find a minimal
spanning tree we need a more efficient algorithm than brute forst checking all
the possibilities.

Kruskal’s algorthm

For finding spanning trees, it turns out there are several easy algorithms that
will always find the cheapest spanning tree. Many of them are greedy algorithms,
which do not “plan ahead”, but rather blindly do the best possible next step.
Kruskal’s algorithm is an example of these, which builds a spanning tree T step
by step, starting from the subgraph of Γ consisting just of the vertices of Γ and
no edges:

1. Find the cheapest edge e remaining from Γ, and remove it from Γ.
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2. If adding e to T will not make any loops, add it to T . Otherwise, discard
it.

3. Iterate the first two steps until T is a spanning tree.

In class we now ran an example of Kruskal’s algorithm – we’ll skip that in the
note, but there are many such examples available online, for instance, in this
short Youtube video .

Note that to have a spanning tree, the graph Γ must be connected. Running
Kruskal’s algorithm on a disconnected graph will produce a spanning tree for
each component of Γ.

Proof of the correctness of Kruskal’s algorithm:

From a mathematical point of view, the interesting part is to prove that running
Kruskal’s algorithm on a connected graph will always produce a minimal spanning
tree. There are two things to prove: that the end result of Kruskal’s algorithm
actually is a spanning tree, and that it is a minimal cost spanning tree. We
prove the first part now, and the second part in this afternoon’s lecture.

To prove the first part, we first note that the graph T produced by Kruskal’s
algorithm contains all the vertices of Γ, as they were all added at the beginning.
Thus, we only have to show that T is a tree – that is, it is connected, and that
it has no cycles.

Suppose that T consisted of more than one component. Since Γ is connected,
there would be two components of T , say, C1 and C2, with edges between C1
and C2. But adding the cheapest such edge to T does not create any loops, and
hence it would have been added by Kruskal’s algorithm, a contradiction.

It is immediate that T will not have any loops, because Kruskal’s algorithm
checks to make sure no loops are created before it adds an edge. Thus, the
output of Kruskal’s algorithm is always a spanning tree.

Lecture 10: Kruskal proof, Traveling Salesman

Kruskal’s completed:

In this morning’s lecture we described Kruskal’s algorithm for finding a minimal
weight spanning tree in a weighted graph. After demonstrating the algorithm,
we showed that it always produces a spanning tree, but we have not yet shown
that this spanning tree has minimal weight. We do that now.

The proof will be inductive. Let T0 be the subgraph that Kruskal’s algorithm
starts with, namely, all the vertices of Γ and none of the edges. Let Tk ⊂ Γ be
the subgraph Kruskal’s produces after adding k edges to T0. We willinductively
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prove that Tk is contained in some minimal spanning tree of Γ. In particular,
since we know Tn−1 is a spanning tree, we see that Tn−1 will be a minimal weight
spanning tree.

The base case is clear: any minimal spanning tree contains all the vertices of
Γ, which is the initial graph T0, and since Γ is finite there exists some minimal
spanning tree.

For the inductive step, we assume that Tk produced from Kruskal’s algorithm is
contained in some minimal spanning tree M , and Kruskal’s algorithm tells us
we should construct Tk+1 from Tk by adding the edge e to T . We need to prove
that Tk+1 is contained in some minimal weight spanning tree M ′. We claim we
can take M ′ = M \ {e} ∪ {f}.

First, note that M ′ is indeed a spanning tree; since M ∪ e has a cycle, M ′ is
connected, and it has the right number of edges.

Now, we must showM ′ has minimal weight. SinceM ′ only differs fromM (which
had minimal weight) by adding f and removing e, we see that w(M ′) = w(M)
if and only if w(e) = w(f).

Since M is by supposition a minimal weight spanning tree, we have that w(f) ≤
w(e). Since Kruskal’s algorithm is trying to add the edge e instead of f , we
have that either w(e) ≤ w(f), or that adding f to T creates a cycle. But
T ∪ f ⊂M ′ which is a tree, so it cannot be creating a cycle, and we must have
that w(e) ≤ w(f).

Thus, w(e) = w(f), and so M ′ is a minimal weight spanning tree that contains
T ∪ e.�

Comments on minimal spanning trees

Although Kruskal’s algorithm only finds a single minimal spanning tree, the only
time Kruskal’s algorithm has any choice is in what order to add edges with the
same weight. Thus, it is possible to find all minimal spanning trees by analyzing
what happens when we had a choice of edges to add.

There are several other algorithms for finding minimal spanning trees:

1. Prim’s algorithm is very similar to Kruskal’s algorithm, but we start from
a single vertex, and always add the cheapest edge that is connected to
what we already have and doesn’t create any loops.

2. The Reverse-delete algorithm is the opposite of the greedy algorithm.
Rather than adding the cheapest edge possible, the Reverse-delete algo-
rithm worries about getting “stuck” having to add an expensive edge. It
continually finds the most expensive edge. If removing that edge does not
disconnect the graph, it does so. If it does disconnect the graph, it keeps
that edge as part of the spanning tree, and finds the next most expensive
edge.
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Traveling Salesman Problem

The Traveling Salesman Problem, abbreviated TSP, is the following: given a
weighted graph Γ, find the cheapest Hamiltonian path; that is, the cheapest
closed walk on Γ that visits every vertex exactly once.

We begin with some basic observations:

• It is enough to consider the complete graph Kn. If we are given some
other weighted graph Γ, we can add all the edges not in Γ but make their
weights much larger than any of the weights inside Γ.

• The problem of determining whether a given graph Γ has a Hamiltonian
cycle is a special case of the traveling salesman problem. To see this,
suppose we’re given a graph Γ, and we want to determine whether it is
Hamiltonian. We create a weighted Kn, with vertices the vertices of Γ by
giving the edge v − w a very small weight ε if v and w are adjacent in Γ,
and a very large weight M if v and w are not adjacent in Γ. Then, any
Hamiltonian path in Γ would have cost nε, where as any path that uses an
edge not in Γ costs more than M . So, if we make M > nε, the TSP for
our weighted Kn will have a solution with cost less than M if and only if
Γ had a Hamiltonian cycle.

Since determining whether a graph Γ is Hamiltonian is difficult (NP complete),
the TSP will also be. As such, we will not discuss any algorithms for actually
solving TSP. Instead, we will discuss methods for giving upper and lower bounds
for the TSP.

Upper bounds for TSP

Since the TSP asks for the cheapeast Hamiltonian cycle, taking any Hamiltonian
cycle and calculating its cost will be an upper bound for the TSP. Just choosing a
random Hamiltonian cycle will in general be very expensive and silly – for instance,
going from Sheffield to London to Rotherham to Edinburgh to Chesterfield to
Glasgow to Nottingham to Brighton is clearly not optimal.

A greedy algorithm will give a heuristically better result: we call it the nearst
neighbor algorithm. At each step, simply go to the nearest city you have not
already visited. This will give good results at the beginning, but since we do
not do any planning ahead, it will in general give bad results, as the following
example illustrates:

Consider running the Nearest Neighbor algorithm starting at v0. At the first
step, we have a choice – we could go to v1 or to v9. Suppose we go to v1. After
that, our choice is forced – v1− v2− v3− v4− v5− v6− v7− v8− v9 costs one at
each step. Now, we still have to visit T before returning to V0, which will cost
us 10 to detour through. We clearly should have planned ahead and visited T in
between vertices v4 and v5 at a cost of 4.
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The nearest neighbour algorithm for finding upper bounds is demonstrated in
this video.

Clearly the nearest neighbour algorithm is not very good, and better algorithms
are possible; we present it first to give a quick but reasonable way to get a
solution to TSP that isn’t completely horrible, and second to illustrate that
greedy algorithms in general will not be efficient.

Lower bounds for TSP

To get a lower bound for TSP we have to be a little more intelligent. Suppose
we had a solution C to the TSP for Γ, and that we deleted one vertex v from
C. Deleting a vertex from a cycle gives us a path P , and in particular a tree.
Furthermore, P visits every vertex in Γ except for v, and so it is a spanning tree
of Γ \ v.

We can use Kruskal’s algorithm (or another) to find a minimal spanning tree T
of Γ \ v, and we have that w(P ) ≥ w(T ). The cycle C contains just two more
edges, from v to two other vertices, say a and b. We can obtain lower bounds on
the weights of the edges v − a and v − b by taking the weights of the lowest two
edges out of v, maybe e1 and e2. We have

w(C) = w(P ) + w(a− v) + w(b− v) ≥ w(T ) + w(e1) + w(e2)

giving us a lower bound on solutions to the TSP.

This method of finding lower bounds is illustrated in this video

Lecture 11: Routing algorithmns – Dijkstra’s and
A∗

Today we will discuss two related algorithms for finding the shortest path between
two points in a weighted graph, Dijkstra’s algorith, which has been taught in
this module for years, and the A* algorithm, which is a tweak on Djikstra’s
algorithm that hasn’t been in this module before.

Both algorithms are extremely standard and there are a wealth of online exam-
plesand comparison videos and information that should be valuable:

Djikstra: Wikipedia Computerphile video

A*: Wikipedia Computerphile video
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Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest path between two points in a weighted
graph. There are some variations on it, and the version we present will find
the shortest path between a fixed vertex v and every other vertex a of Γ, which
basically all versions do without more work. We will denote cv(a) to be the cost
of the shortest path from v to a.

For Dijkstra’s algorithm to work, we require all the edge weights to be non-
negative, but in real world examples this is usually true.

The algorithm

The basic set-up of the algorithm is to keep a running a list of “potential” shortest
paths between v and some of the vertices. To initialize this list, we just record
every vertex a adjacent to v, and the weight of the edge vw connecting them.

At each step of the algorithm, we choose the lowest such “potential” shortest
path, say, a path to a, and declare it to actually be the shortest path. We then
update our list of potential shortest paths by looking at all vertices b adjacent
to w. We could get a path from v to b by first taking a path from v to a, which
costs cv(a), and then adding on the edge from a to b, which costs w(ab). Thus,
we compare the cost of the “potential” shortest path from v to b (if there is
one), with cv(a) + w(a− b), and make whichever one is lower the new potential
cheapest path from v to b. We then remove a from the list of vertices, and
continue on our way.

Proof of correctness

Unlike Kruskal’s algorithm, where we had to do some work to prove that the
algorithm always produced the correct answer, with Dijkstra’s algorithm it is
fairly obvious that it will always give the correct answer. Consider the step where
we final a potential shortest path from v to a as actually being the shortest. If
this wasn’t true, then there would be some shorter path from v to a. We haven’t
found this path yet, which means it would have to travel through some other
vertex b we haven’t yet optimized the minimal path for. But any path from v to
b. But since the cost of the path from v to a is minimal among potential paths
we can see, the cost of the path from v to b would be at least as much as the
cost to v to a, and that’s before we add the extra cost from b to a.

Examples

There are many videos online demonstrating Dijkstra’s algoirth, as well as some
applets
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A* Algorithm

If all you know is that you have a weighted graph, then Dijkstra’s algorithm is
essentially the best that can be done. However, in many real life situations more
about the structure of the graph is known.

For example, suppose I wanted to drive the shortest path from Sheffield to
Edinburgh. I know that I want to drive mostly North – I won’t be able to drive
in a straight line to Edinburgh, and it may be that the fastest trip drives South
slightly to get onto a highway – but in general, I want to be headed North, and
I can safely throw out any path that takes me through Nottingham. However,
since Nottingham is closer to Sheffield than Edinburgh is, Dijkstra’s algorithm
would waste a lot of time exploring the roads around Nottingham.

Similarly video games usually take place on very regular grid-like graphs, where
it’s very clear what the shortest path would be. However, there may be obstacles
in the way that the shortest path must avoid, which means we can’t blindly
return one of the regular shortest paths.

We need a way to encode this extra information we know about the graph. In
the A* algorithm this is done through a heuristic function.

Definition

A heuristic function h(v, w) takes in two vertices v, w, and returns a guess at
the distance from v to w. We say that a heuristic is admissible if the guess is
always strictly less than the shortest path from v to w in the graph.

The A* algorithm will make use of a heuristic algorithm to priotize the search
direction. If the heuristic is admissible, the algorithm will be guaranteed to return
a shortest path. This will no longer be true if the heuristic is not admissible.

The “better” the heuristic, the faster the algorithm will run – if the heuristic
function h(v, w) returns the actual distance of the shortest path from v to w, then
the algorithm will immediately find the optimal path. Sometimes it is convenient
to use a non-admissible, but “close to” admissible heuristic in situations where
speed is important – for instance, in a video game where hundreds of characters
are moving simultaneously.

The A* algorithm

The goal is to find the shortest path from s to f (for start and finish) in a
weighted graph, using some heuristic function h(v, w). The algorithm is quite
similar to Dijkstra’s: at all times we will have a list of “known” shortest paths
from s to other vertices v, and of candidate shortest paths from s to vertices w,
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and will continually update our lists by moving the “best” candidate path to a
known path.

What changes is what “best” means – rather than add the vertex with the
cheapest distance from s, that is, the lowest dΓ(s, v), we add the vertex with the
lowest value of: f(v) = dΓ(s, v) + h(v, f). The first part is the actual cost of a
path from s to v, the second part is the heuristic cost of a path from v to f .
Thus, the function f records our best guess at the cost of a path from s to f
through v.

Lecture 12: Scheduling and longest paths

Last session we discussed Dijkstra’s algorithm for finding the shortest path
between two points in a graph. Our main topic today will be to discuss an
algorithm for finding the longest path between two points in a graph.

Before discussing the algorithm, we give some background to motivate the
question and to make it well defined.

Directed graphs

The first problem in discussing the longest path in graphs is that it won’t exist.
If we are allowed to revist vertices and edges, then we can simply go back and
forth between two vertices an arbitrary number of times to make any path as
long as we want. One way to rule this out would be to just not allow repetition
of vertices or edges; doing this would make looking for the longest path similar to
seeing how close to Eulerian / Hamiltonian the graph is. This is an interesting
problem, but is not the problem we consider.

Instead, we will work with a slightly different class of graphs that will make
repetition of edges and vertices impossible.

Definition

A directed graph Γ is a graph where each edge has a direction. Rather than
simply connecting two vertices, an edge e goes from vertex a to vertex b. An
example is a system of one way roads.

Directed graphs are usually drawn in a similar way to graphs, but with the edges
becoming arrows rather than just lines to indicate which way they go:

A path in a directed graph is series of edges e1, e2, . . . , en so that the end vertex
of ei is the start vertex of ei+1.

A directed graph is acyclic if it has no oriented cycles.
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Scheduling

The main application of the longest path algorithm is in scheduling. Suppose
we have a large project – say, building a house – that is composed of many
smaller projects: digging the foundation, building the walls, connecting to gas,
electricity, and water, building the roof, doing the interiors, landscaping, etc.

Some of these activities will require others to be done before them (you can’t put
the roof on before you’ve built the walls; you don’t want to do the landscaping
before you’ve dug your water lines), while others could be done at the same
time (finishing the interiors and doing the landscaping). Each sub-job has an
expected amount of time required to finish it; you’d like to know before hand
how long the whole task will take, and when the various sub-jobs should be done
so you can arrange the contractors.

From a series of jobs like this, we will construct a weighted, directed, acyclic
graph. The edges will be the sub-jobs. The weights of each edge will be the
expected length of time that job has. The structure of the graph will encode the
dependencies of the subjobs on each other – an edge e will flow into an edge f
if the job f immediately depends about the job e. The graph will be acyclic,
because any cycle would be a chain of events that each depended on the previous
one, which would mean the job could never be started!

We will work out the construction of this graph in one example. It is not always
trivial to construct the directed graph from the table of jobs and dependencies.
It is not clear what the vertices should be, and sometimes dummy edges and
vertices need to be encoded. You do not need to worry about constructing these
graphs in general, though if you’re curious it can be interesting to think about.
Any exam question about this topic would supply you with the directed graph.

Example

Consider the following table, listing tasks A−H, the expected time of completion
for each task, and the required tasks before a given task can be started.
Task Time Prerequisites
A 6
B 7
C 4 A
D 3 A
E 4 B,D
F 10 C
G 3 C
H 10 E,G

Here is the corresponding graph encoding this information:
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Construction of the graph

We outline how the graph above was constructed. We make one vertex for
the start, one vertex for the finish, and then another vertex for each set of
dependencies, that is, the entries in the third column. Then we draw an edge
for each letter, beginning at the vertex corresponding to its set of prerequisites
(or the start, if it has none), and ending at the vertex that contains it as a
prerequisite (or the end, if no tasks require it as a prerequisite).

Note that this method works only if any two sets of prerequisites either have
nontrivial intersection or are identical. The tricky cases you don’t have to worry
about are when this isn’t true.

Longest Paths

With that detour out of the way, we see why finding the longest path in a
directed acyclic graph is useful: in case the edges are tasks and the weights are
expected times, the length of the longest path is the minimal time the whole
project would be able to be completed.

Moreover, it is useful to actually know what the longest paths are – to achieve this
minimal time, each task in the longest path must be completed in the expected
amount of time, and the next task in the path must be started immediately when
the first one finishes. For this reason, the longest paths are known as critical
paths.

Longest path algorithm

We now describe an algorithm for finding the longest paths from a starting vertex
S to all other vertices.

First, number the vertices of your graph is that all edges flow from a lower
vertex to a higher vertex. This is always possible for an acyclic graph, but not
necessarily uniquely so – the vertex numbering in our example graph satisfies
this property, but we could have switched the labelling of vertices two and three
and still had the desired property.

Then, we find the longest path to each other vertex inductively, by ordering of
their numbers. Suppose that we have found the longest paths to each vertex
with number lower than k, and we want to find the length of the longest path to
vertex k, which we will call u.

Let ei be the edges that come into u, let w(ei) be the lengths of these edges,
and let vi be the source vertex of ei. Since our edges go from lower numbered
vertices to higher numbered vertices, all the vi are labelled with numbers lower
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than w (i.e., lower than k), and hence by the inductive hypothesis we know the
longest paths to vi. Let `(vi) be the length of this longest path from S to vi.

Any path to w must pass through one of the vi, and so the length of the longest
path to u is the

`(u) = maxi

[
`(vi) + w(ei)

]
Typically we will want to find the longest path in addition to just knowing its
length, and an easy way to do this is to record the edges ei that achieve the
maximum. Then we can find the long paths in reverse by starting from F and
going to any recorded vertex.

Example of the algorithm

We illustrate the longest path algorithm with our example graph. Our start
vertex is S, and so `(S) = 0.

Vertex 1 has only one incoming edge: A, with weight 6, and so `(1) = 6+`(S) = 6.

Vertex 2 has two incoming edges: B and D, and so we see that `(2) is the
maximum of w(D) + `(1) = 3 + 6 = 9, and w(B) + `(S) = 7 + 0 = 7, and so
`(2) = 9.

Vertex 3 has just one incoming edge: C, and so `(3) = w(C) + `(1) = 4 + 6 = 10.

Vertex 4 has two incoming edges: G and E, and so `(4) is the maximum of
w(G) + `(3) = 3 + 10 = 13 and w(E) + `(2) = 4 + 9 = 13. Thus, the maximum
is achieved in two different ways, and we see that there are two paths of length
13 from S to 4 – S − 1− 3− 4 and S − 1− 2− 4.

Finally, vertex F has two incoming edges, F and H, and so `(F ) is the maximum
of w(F ) + `(3) = 10 + 10 = 20 and w(H) + `(4) = 10 + 13 = 23. There are two
paths that achieve this maximum – A− C −G−H and A−D − E −H.

Critical path analysis

Apart from knowing the minimum time for completion of the project, finding
the longest paths is useful for analysing where to put resources. In particular,
which tasks, if they run slightly over, would make the whole project run late?
Which tasks, if they were able to finish slightly early, would make the whole
project finish early?

To make the whole project run later, we need to increase the length of the longest
path, which means we to increase the length of any long path. Thus, the edges
that would make the whole project run over are those contained in any longest
path – in our graph, these are edges A,C,D,E,G and H.
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To make the whole project finish early, we need to decrease the length of every
longest path, and so these are the edges that are included in every longest path.
In our graph, these are edges A and H.

These ideas can be developed further, to list for each task the earliest possible
starting time, and the latest starting time that is possible while still finishing
the whole project in the minimum amount of time.

Lecture 13: Planar Graphs

The next two weeks will be devoted to graphs on surfaces; we will cover planar
graphs and Kuratowski’s algorithm, drawing graphs on other surfaces, and
Euler’s theorem and applications. As an introduction, we begin with the Three
utilities problem (which apparently none of you had seen before).

An Old Chestnut

Alice, Bob and Carol, each have a house, and each want to connect themselves to
the power plant, the sewer plant, and the gas plant by independent underground
lines. Is it possible to do it so that none of these lines cross over each other?

In class, I tried to draw a solution, and came up with a drawing very like the
following, stolen from this site about the problem:

However, this just shows one attempt at connecting them up fails; it seems very
hard to prove that no such attempt could succeed, as there are lots of ways
you could try to draw it. However, later in this lecture we will show that it is
impossible. But first

A notational interlude:

In the graph we are trying to draw in the Three Utilities Problem, we have two
different types of vertices: the houses, and the utility factories. The graph only
has edges between vertices of one type and vertices of the other type. Similar
graphs occur frequently, and so we make the following definition:

We have typically viewed graphs as drawings in the plane, with the vertices
as dots and the edges as lines between them. Different choices of drawings of
them same graph can look very different (as we saw with the Petersen graph).
One thing that is convenient is to have drawings where the edges never cross
(we might wonder if the crossing is a vertex). We are naturally then led to the
following definition:
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Figure 6: Attempt at solving the three utilities problem

Definition

A graph is planar if it can be drawn in the plane (R2) so that none of the edges
cross.

Definition

A graph is bipartite if its vertices can V (Γ) and can be separated into two sets,
U and W , so that any edge of goes between a vertex of U and a vertex of W .

The very first picture on the wikipedia entry is the picture you should have in
your head.

Example

The 4 cycle C4 is bipartite, while the 3 or 5 cycles are not.

A special case is when every vertex of U and is connected to every vertex of W –
i.e., the graph has many edges as it can while still being simple and bipartite.
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Definition

The complete bipartite graph Km,n has m+n vertices, split into a set U with m
vertices and W with n vertices. For every u ∈ U and w ∈W,Km,n has exactly
one edge.

Back to the puzzle:

Returning back to the Utilities Problem, it should be fairly clear that it is
equivalent to the following question: Is K3,3 is planar? Our next goal is to prove
that it is not.

A tiny bit of topology

Since we’re trying to draw it in the plane, we are secretly starting to do a little
bit of topology. This is not a module on topology, and we will do as little as we
can get away with, but it may help to highlight slightly where we use a little. In
particular, the main idea of the proof will use some form of the Jordan Curve
Theorem, which basically says that if we draw a simple closed curve (i.e., a circle)
in the plane, it cuts it into two pieces, an inside and an outside. This certainly
sounds intuitively obvious, and would go without question to anyone besides
a mathematician – think about some of the nasty curves you encountered in
Analysis!

Main idea of the proof

The problem with trying to show a graph is nonplanar is that it seems at first
glance that there are tons of possible ways to try to draw it in the plane, and so
the proof would have a huge number of different cases, and it would be tricky
to make sure you’d covered them all. The main idea of the proof is to use
the Jordan curve theorem as a way to eliminate a lot of cases and organize
the remaining ones. This idea is widely applicable, and in previous versions of
the course was referred to as the “planarity algorithm”, although we will not
formalise it to the level of an algorithm.

The idea is the following: suppose that a graph Γ was planar, and consider some
closed walk W in Γ that doesn’t repeat any vertices. Then if we draw Γ in the
plane, then W will be a circle, and so by the Jordan curve theorem every vertex
or edge not in W must either be on the inside or outisde of W . One can then
do a case-by-case analysis placing each vertex or edge inside or outside.

Obviously, the fewer vertices and edges that aren’t contained in W , the fewer
cases our proof will have, and so in the best case )and the only ones we will
consider) we take W to be a Hamiltonian cycle.

40

https://en.wikipedia.org/wiki/Jordan_curve_theorem
https://en.wikipedia.org/wiki/Jordan_curve_theorem


Proof that K3,3 isn’t Planar

Let the vertices a, b, c be coloured red and vertices x, y, z be coloured blue. The
path a− x− b− y− c− z − a is a Hamiltonian cycle, that we draw as a circle in
the plane, as shown below:

This contains 6 of the 9 edges of K3,3; we need to add the edges a− y, b− z and
c− x. The edge a− y could be drawn inside the circle or outside, suppose we
draw it inside, as shown below, with the added edge dashed.

Then on the inside of the circle, x and c are on different sides of the line a− y,
and so the edge connecting them must go outside the circle. The added edge
could go around the right of the circle, as shown below here:

or around the left, as shown here:

But now b and z are different sides of a− y inside the circle, and on different
sides of c− x outside the circle, and so cannot be connected without making two
edges cross.

If we had began by drawing a− y outside the circle, then we would have had to
draw c− x inside the circle, and had the same problem with being able to draw
the last line; as shown here:

An unnecessary case and steoreographic projection

In the proof as presented, we do two cases that seem essentially identical –
namely, whether the first edge a− y was drawn inside the circle or outside the
circle. In a good proof you don’t want to consider more cases than necessary, so
it’s worth stopping to see if these cases are really “the same” or not.

At first glance, the inside and outside of the circle seem to appear very different:
the inside has finite area, while the outside has infinite area. However, here’s
a slightly different situation where the inside and outside are obviously inter-
changable: replace 2 with the sphere S2, and draw the circle as the equator.
Then the “inside” is the northern hemisphere, and the “outside” is the southern
hemisphere, and obviously we can just do a reflection to interchange them.

It seems like a huge leap to replace the plane with the sphere, but the sphere is
really just the plane with one additional point! Put another way, suppose we
could draw Γ on the sphere. Our drawing would miss at least point, and if we
cut open the sphere at that one point we could stretch the sphere out and lay it
flat on the plane, giving a drawing of Γ on the plane.

That sounded vague, but one way it can be made precise is the following: through
stereographic projection, which the wikipedia page makes look complicated, but
is really just this picture:

41

https://en.wikipedia.org/wiki/Stereographic_projection


Figure 7: Stolen stereographic projection picture

Draw the sphere as the unit sphere centerred at the origin, so the North pole
is the point N = (0, 0, 1). Then, for any point Z 6= N on the sphere, there is
a unique line through N and Z. That line will meet the xy plane in a unique
point z. Similarly, given any point z in the xy plane, the line through z and N
will meet the sphere in one other point Z. This gives a bijection between points
on the plane, and points on there sphere (except for the north pole).

If discussion above we slightly lacking, there are lots of fun videos showing
(variations of) stereographic projection on youtube. I mentioned in particular
Henry Segerman’s videos that illustrated this using shadows and 3-d printed
spheres.

Back to planar graphs

If that digression into topology seemed long and pointless, the upshot is that if
we’re trying to prove a Hamiltonian graph is nonplanar, we can treat the inside
and the outside of the circle as equivalent, and so when we try to add the very
first edge we may as well put it inside. This gives us one less choice, and so
makes our proofs about half as long! We will use this trick to show that:

The complete graph K5 isn’t planar

The proof is similar, in that we begin by picking a Hamiltonian cycle, say,
a− b− c− d− e− a, and drawing this as a cirlce in the plane, and then try to
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add the remaining edges. K5 has 5 · 4/2 = 10 edges, and 5 are contained in the
cycle, so we have 5 more edges to add – a− c, a− d, b− d, b− e and c− e.

Since the inside and outside of the circle are equivalent, we will assume the first
edge a− c is drawn inside the circle, giving us the following picture:

It may be tempting to next consider the edge a − d, but this could be drawn
either inside or outside the circle, and so we’d have to start considering cases.
We get a shorter, cleaner proof if we now move on to the vertex b.

The vertex b is separated from d and e on the inside of the circle by the line ac,
and hence the edges b− e and b− d must be drawn on the outside of the circle.
These edges separate a from d on the outside of the circle, and so this must be
drawn inside, giving the following picture:

But now we cannot add the final c− e, as c and e are separated from each other
on both the outside and the inside of the circle.

�

Lecture 14: Kuratowski’s theorem; graphs on the
torus and Mobius band

Last session we proved that the graphs K3,3 and K5 are not planar. We now
discuss Kuratowski’s theorem, which states that, in a well defined sense, having
a K3,3 or a K5 are the only obstruction to being non-planar.

We begin with some two simple observations.

Observation 1

If H is a subgraph of G, and H is not planar, then G is not planar.

Proof

If we could draw G in the plane, it would produce a drawing of H in the plane,
a contradiction. �

As an immediate corrolary, we see that Kn is not planar for n ≥ 5, as all such
complete graphs contain K5 as a subgraph; similarly, Km,n are not planar, with
m,n ≥ 3.

Our second observation is the following: suppose we took a graph Γ, and made a
new graph Γ′ by adding one vertex of degree 2 in the middle of one of the edges
of Γ. Then drawing Γ′ is basically the same as drawing Γ, and then sticking an
extra dot on an edge. Hence, Γ′ will be planar if and only if Γ was.
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We now make this precise:

Definition

We say that Γ′ is a subdivision of Γ if it is obtained from Γ by repeatedly choosing
an edge e and splitting it into two by adding a new vertex, as in the following
picture:

Figure 8: Splitting/Joining an edge

Observation 2

Suppose that Γ′ is a subdivision of Γ. Then Γ′ is planar if and only if Γ is.

Example

The following graph G is nonplanar, since it is obtained from K3,3 by subdividing
a single edge.

Putting together the two lemmas, we see that if G has a subgraph H, so that H
is a subdivision of a non-planar graph (like K5 or K3,3), then we G isn’t planar.
We illustrate this now in an exmaple.

Example: The Petersen graph is not planar

The subgraph drawn with thick edges (containing all but two of the edges in the
Petersen graph) is homeorphic to K3,3. we have drawn three vertices blue and
three vertices red to highlight the vertices of K3,3. The nonhighlighted edges
are in the subgraph, but they are the ones that are forgetten to show that the
highlighted graph is homeomorphic to K3,3.
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Figure 9: K33 Subdivision
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Figure 10: PetersenSubgraph
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Kuratowski’s Theorem

A graph G is nonplanar if and only if it contains a subgraph homeomorphic to
K5 or K3,3.

Our two observations, together with this morning’s result that K3,3 and K5 are
nonplanar, prove the “if” direction. The “only if” direction is much harder, and
we will not prove it.

However, we will only use the “only if” direction implicitly. Using the “only
if” direction explicitly would amount to prove that some graph was planar by
showing it had no subgraphs that were subdivisions of K5 or K3,3, which we
would be quite laborious. We have a much easier way to prove that a graph is
planar: drawing it in the plane.

We will however, use the “only if” direction implicitly in the following way.
Suppose we have a graph G, and we want to determine if G is planar or not. We
can try to prove it is planar by trying to draw it in the plane, and we can try
to prove it is not planar by finding a subgraph of G that is homeomorphic to
either K3,3 or K5. The “only if” direction of Kuratowski’s theorem tells us that
one or the other of these attempts will always work. Thus, we have a practical
method to determine whether or not a graph is planar or not – try to draw it in
the plane. If you find this difficult, and begin to expect that it isn’t possible,
start looking for a subgraph homeomorphic to either K5 or K3,3, which would
prove it can’t be drawn on the plane.

Graphs on other surfaces

We now transition to drawing graphs on other surfaces. In lecture, we had some
slides providing pictures for the beginning of this discussion; a few, but not all,
of those images are in the body of these notes now.

Trying to draw graphs on surfaces can be fun, but it seems like a rather unmoti-
vated question to consider, so we began with motivating it by videogames. Many
videogames (pacman, asteroids, overhead RPGs like the early Final Fantasy
games) take place on a rectangle screen:

Figure 11: Videogame map

To avoid making the world have an “edge”, the result will often happen: if a
character moves off the right of the screen it will reappear at the edge of the left
screen, and similarly if a character moves off the top of the screen, it reappears
on the corresponding place on the bottom of the screen.

This set-up is used to simulate the surface of a planet. However, if one traces
through the result of these identifications, one sees that the surface is a torus:
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Figure 12: map folding

Definition

A “video-game graph” is one that “locally looks like” a part of graph paper.

Motivating Question

If videogame designers were more clever, could they put a finite videogame graph
on the sphere? Can you prove that it isn’t possible?

Drawing graphs on the torus

If we wanted to draw a graph on the sphere, we could do this physically by
taking a balloon and a felt pen, but it would be a little awkward to turn in or
mark homeworks this way. Luckily, we saw last time that, using stereographic
projection, drawing a graph on the sphere is equivalent to being able to draw it
on the plane.

Similarly, we could draw graphs on torus by getting donuts, and writing on them
with icing sugar. But again, this is rather impractical, and we’d like a way to
represent drawing a graph on a torus that is conveniently done on a piece of
paper.

The videogame / paper-folding discussion shows us how to do this. We draw
a square to represent the torus. On the top and bottom border we draw one
arrow in the same direction, to signify that these edges will be identified (this is
how the paper was folded, or what a character does in the videogame). We do
similar with the side borders, with two arrows.

Then we can draw the graph in the square, with the following added options – if
a drawn edge reaches the left (right) border, it continues at the same spot on
the right (left) border, and similarly with the top/bottom borders.

Example

K5 and K6 cannot be drawn on the plane, but they can be drawn on the torus
as follows:

The graph on the left shows K5 on the torus. The picture on the right has the
same drawing of K5 in black, but in red has added an extra vertex and 5 extra
edges incident to it to make a K6. There are appear to be 4 red vertices, at each
corner of the square, but since all the corners get identified by the folding, they
correspond to the same point of the torus.
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Figure 13: K5 and K6 on the torus

Challenge

Draw K7 on the torus.

It turns out that K8 cannot be drawn on the torus – we will not quite be able
to prove this, but it follows from something very similar to Euler’s theorem.

What comes next?

What other surfaces other than the sphere and torus are possible? One possibility
is just adding “more holes”; this produces the “donut with g holes”, more formally
known as the “suface of genus g”.

You won’t have to work with surfaces of higher genus, but it is worth knowing
that this is an active area of research and investigation. It turns out (try to
prove it! It’s not hard. . . ) that given any finite graph Γ, there is some g so that
Γ can be drawn on a surface of genus g without the edges crossing. The genus
of a graph Γ is defined to be the lowest G such that this can be done.

Nonorientable Surfaces

Although you won’t have to work with surfaces of higher genus, you will have
to be able to work with a couple of other surfaces. We will end this lecture by
introducing the Mobius band:
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Unorientable surfaces

In this half of the lecture, we introduce the real projective plane, the simplest
closed compact unorientable surface.

Before we do that, it is easiest to review an unorientable surface with boundary
that may be more familiar: the Mobius band.

The Mobius band

Suppose one has a strip of paper and glues the opposite edges together in the
natural way – this makes a cylinder.

If instead, one glued the ends together with half a twist, one would get the
Mobius band:

Figure 14: mobius band glue

The mobius band is not the same topological space as the cylinder. One way to
see this is that it is unorientable – there is not a consistent notion of left and
right on the Mobius band. If you start at one point on the Mobius band, and
travel along it until you jump across the other side of the identification, you will
eventually return to where you started. However, your left and right will have
been interchanged! This is seen in the following pictures, stolen from this blog
post:

The creature started out, his right hand was blue, but when he returns from his
trip around the mobius band it is now his left hand that is blue!
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Figure 15: courtesy haggisthesheep.blogspot.com

Lecture 15: Unorientable surfaces, classification
of surfaces, dual graphs

More Mobius

At the end of the last lecture we briefly introduced the Mobius band. This
lecture, we briefly recalled what the Mobius band looked like, noted that it only
has one edge, and as a warm-up drew K3,3 on the Mobius band.

We noted that the Mobius band only had one edge; which didn’t seem so scary.
However, this means that if you cut the Mobius band down the middle, it doesn’t
split into two pieces! Note that this violates the Jordan curve theorem, the
intuitive seeming that every circle as an inside and an outside.

Real Projective Plane

The Mobius band is nice, but it’s a little annoying that it’s just a surface with
boundary, not just a surface – you could walk off the edge. However, we can
fix this, by taking a disk, and gluing it to the Mobius band along the boundary
circles. The result is called the (real) projective plane, and written RP2. The
projective plane is a closed, compact surface, but you can’t draw it in R3 without
it passing through itself.

We need a planar representation of the projective plane, along the same lines
as our planar representations of the surface of genus g we gave in the first half
of this lecture. To do this, we claim that the real projective plane is the same
as the disk with opposite sides of the boundary identified, as in the following
picture:
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Figure 16: RP2 is the disk with opposite points on the boundary identified
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We now have two descriptions of RP2 – as a mobius band glued to a disk, and
as a disk with opposite points on the boundary identified. We should check that
they are the same, which can be done by cutting and pasting, as illustrated in
the following picture:

Figure 17: Equivalence between the two descriptions of RPˆ2

The part labeled [1] begins with a disk with opposite parts of the boundary
identified. We cut a strip J out of the middle of the disk – this is the Mobius
band.

The remaining pieces F and R, when we glue them together as the boundary of
the disk was, becomes just a disk.

The part labelled [2] is another way to see it that is the inverse of what I drew
on the board.

Just as we argued that a graph was planar if and only if it could be drawn on
the sphere, one can show:

Lemma

A graph Γ can be drawn on RP2 if and only if Γ can be drawn on the Mobius
band.

Proof

Since we obtain RP2 by adding things, clearly if we can draw Γ on the Mobius
band we can draw it on the projective plane.

To go the other direction, not that any drawing of Γ will leave some white space,
and we can just cut a small disk out of the missed area to get a Mobius band.

Graphs on RP2

Since we have a planar representation of RP2 we have a handy way to draw
graphs on it. We draw a graph inside a circle, and if we can draw edges that hit
the boundary of the circle, and they will continue on the other side.

As an example, we show how K5 can be drawn on RP2 below:

Four of the vertices are in the interior of the circle, the fifth vertex is on the
boundary and hence appears twice, at the very top and very bottom. The edge
from the upper right vertex going diagonal down hits the boundary at the very
right, and then continues on its way starting again from the very left.
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Figure 18: K5 drawn on RP2
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Klein Bottle

When we glued a disk to the boundary of the Mobius band, we could instead
of glued the boundary of a second Mobius band to them. This this youtube
video illustrates that process, but it is probably easier to do a cut and paste
computation similar to how we constructed our presentation of the projective
plane, we see that the surface this results in looks a lot like the Torus, but with
one of the sets of identifications done backwards:

Figure 19: Klein bottle is two Mobius bands

The resulting surface is called the Klein bottle; again, the Klein Bottle is un-
orientable and cannot be drawn in 3 without crossing over itself; it is usually
drawn in 3 as follows:

It is most conveniently pictured as a square with the opposite sides identified,
but with one pair of sides reversed, as seen in the following picture.

It is not too hard to visualize that this identification pattern gives the picture
above. If we identify the blue edges marked B we just get the cylinder. Now, we
have to identify the ends of the cylinder, but with the orientations reversed; to
do this we have to pass through the surface itself as seen in the picture.

Mathematical Cultural Literacy: The classification of surfaces

You will only be responsible for being able to draw graphs on the four simplest
surfaces: The sphere, the torus, the projective plane, and the Klein bottle.
However, it is natural to ask what other surfaces are possible, and how to
represent them in the plane.
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Figure 20: Klein Bottle is a square with sides identified

It turns out that if you take any polygon with an even number of sides, and
randomly glue them together in pairs in some order and choice of orientation,
you will get a closed compact surface, and every closed compact surface can be
gotten in this way (but not uniquely).

The following picture shows how this is done with surfaces of genus 1, 2 and 3.

It can be hard to visualize how folding the 4g-gon up produces a genus g surface;
This video shows this in the case of a two-holed surface that should make it
clear.

Classification of Surfaces

Every closed compact surface is either 1. The surface of genus g, for g ≥ 0 2.
The sphere with k > 0 circles cut out, and a Mobius band

The surfaces in Option 1 are the orientable surfaces, the surfaces in 2. are the
unorientable surfaces.

Dual graphs

In the examples at the very beginning of the course, we got a graph from a
drawing on the sphere: the Risk board, or more generally, any map.
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Figure 21: Low genus surfaces
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The countries (or counties or states or whatever region we are working with) are
the vertices, and two countries are adjacent if they share a border.

This is different from how we have been thinking about drawing graphs on
surfaces – for us, the places where more than two countries meet would be the
vertices, and the borders would again be edges. But both of these graphs are
coming from the same drawing on the sphere, and so must be related somehow;
the concept of dual graphs makes this precise.

Definition

Let Γ be drawn on a surface S. The connected components of S \ Γ – i.e., the
pieces we would have if we cut S along Γ – are called faces

Note: by the Jordan curve theorem, on a sphere, each face will just be a disk.
However, this need not be true on a regular surface – for instance, we can get a
cylinder as a connected region on the Torus, and the Mobius band as a connected
region on the projective plane.

Definition

Let Γ be drawn on a surface S, with vertices v. The dual graph of Γ, S is the
graph with a vertex for each face of Γ, S, and an edge for each edge of e ∈ E(Γ),
that connects the two faces that e separates.

It is not hard to see that the faces of the dual graph are the vertices
of the original graph, and hence that the dual of the dual graph of Γ
is the original graph Γ back.

Lecture 16: Euler’s Theorem and applications

We ended this morning’s lecture by introducing the concept of the face of a
graph, and of the dual graph. In this lecture we prove Euler’s theorem, which
gives a relation between the number of edges, vertices and faces of a graph.

We begin by counting the number of vertices, edges, and faces of some graphs
on surfaces – the tetrahedron (or triangular pyramid) has 4 vertices, 6 edges,
and 4 faces; the cube has 6 vertices, 12 edges, and 8 faces, etc.

Euler’s Theorem

Let Γ be a graph drawn on the sphere, and suppose that Γ has v vertices, e
edges, and f faces. Then v − e+ f = 2.
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Proof idea 1:

One way to prove it is the following: if we delete an edge from Γ, we will (usually)
merge two faces into one, and thus have one less edge and one less face; this
does not change v − e+ f .

Similarly, if we have a vertex of degree 2, we can delete it and merge the two
edges into one, getting one less edge and one less vertex, which does not change
v − e+ f .

By iteratively doing this two moves, you can get to a very basic graph or two,
which you can check have v − e+ f = 2.�

Proof 2: Dual spanning trees

First, take a spanning tree T of Γ; it has v vertices, and since it is a tree it must
have v − 1 edges.

Now, we construct another graph τ as follows. The vertices of τ will be the faces
of our original graph Γ. We will connect two vertices of τ if and only if they
are connected by an edge not in our spanning tree T . Thus, we see that τ is a
subgraph of the dual graph of Γ, that contains all the vertices and every edge
that isn’t in T .

We first note that Euler’s formula follows if we can show that τ is a tree as well,
as then τ would have f vertices and hence f − 1 edges. But since every edge of
Γ is either in T or τ we have

v − e+ f = |V (T )| − |E(T )| − |E(τ)|+ |V (τ)| = 1 + 1 = 2

To prove that τ is indeed a tree, we need to show τ is connected and has no
cycles. If τ were disconnected, then we claim T would have a cycle. Let τ1 ⊂ τ
be one of the connected components, and consider the union of all the faces in τ1.
This is some region of the sphere that isn’t the whole thing; its boundary will
be a union of circles. But the boundary is also a union of edges in T ; therefore,
T must contain a cycle, a contradiction.

We also need to show that τ has no cycles; this is just the “dual” of the above
argument: But if τ had a cycle, it would cut the sphere into two pieces, each
of which would contain a vertex of T , and hence T would be disconnected, a
contradiction. �

Applications of Euler characteristic

Euler’s theorem can be very useful in proving results about graphs on the sphere.
It’s a bit awkward to use by itself – it contains three variables, v, e and f , so
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it is most useful when we already know some relations between these variables.
This may be best illustrated by our motivating example:

Theorem

It is impossible to draw a sphere with a videogame graph.
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